terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Abstract

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine. This report illustrates an example of a collaboration study where data were collected in a commercial winemaking setting to look into the factors that contribute to Pinot Blanc’s typicity. The Control samples used a similar conventional vinification to compare three vineyards (Aldino, Montagna and Klaus). Four distinct winemaking techniques were examined for the vineyard “Aldino” taking into consideration characteristics like pre-fermentative grape freezing and co-inoculation with lactic acid bacteria. Musts before inoculation, young wines after one month and four month of aging and bottled wines at 0, 6 and 12 months of storage were investigated. The samples were analyzed by an offline HPLC-MS for the determination of the phenolic compounds and by HS-SPME-GCxGC-ToF/MS for determining the volatile profiles. The sensory analysis of the bottled wines was performed using Quantitative Descriptive Analysis (QDA ®) [5]. The profile of phenolic and volatile compounds of both musts and young wines were peculiar of each vineyards. For Aldino vineyard, the main differentiating factor for the musts and the young wines was the pre-fermentative grape freezing. No clear difference was observed in the phenolic and volatile profile as a function of co-inoculation with malolactic bacteria. For the bottled wines, specific sensory attributes contributed in the separation of the vineyards at all storage times. Furthermore, the overall quality judgement (OQJ) was significantly higher in all the wines at T12 storage time and for wines from Aldino. The sensory data were also combined with the chemical results to build multivariate models that exemplify how the components affect the wine’s final quality. These built models as fingerprint databases could provide assistance to the winemakers during production and also render useful for authenticity purposes.

 

1. Huglin, P.; IGI Global: Hershey, PA, USA, 2018; pp. 89–98.
2. Balottia, A.; Tscholl, S.; Vigl, L.E. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 50, p. 01031.
3. Pinot Blanc – Alto Adige Wine (altoadigewines.com)
4. Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
5. Poggesi, S., Dupas de Matos, A., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., & Boselli, E. (2021 Molecules, 26(20), 6245

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aakriti Darnal1,2*, Edoardo Longo1,2 , Simone Poggesi.1,2, Vakarė Merkyte.1,2, Marco Montali3, Emanuele Boselli.1,2

1. Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy,
3. Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Università 5, Bozen/Bolzano (Italy).

Contact the author*

Keywords

Pinot Blanc, pre-fermentative grape freezing, vineyard location, chemical profiles

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.