terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Abstract

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine. This report illustrates an example of a collaboration study where data were collected in a commercial winemaking setting to look into the factors that contribute to Pinot Blanc’s typicity. The Control samples used a similar conventional vinification to compare three vineyards (Aldino, Montagna and Klaus). Four distinct winemaking techniques were examined for the vineyard “Aldino” taking into consideration characteristics like pre-fermentative grape freezing and co-inoculation with lactic acid bacteria. Musts before inoculation, young wines after one month and four month of aging and bottled wines at 0, 6 and 12 months of storage were investigated. The samples were analyzed by an offline HPLC-MS for the determination of the phenolic compounds and by HS-SPME-GCxGC-ToF/MS for determining the volatile profiles. The sensory analysis of the bottled wines was performed using Quantitative Descriptive Analysis (QDA ®) [5]. The profile of phenolic and volatile compounds of both musts and young wines were peculiar of each vineyards. For Aldino vineyard, the main differentiating factor for the musts and the young wines was the pre-fermentative grape freezing. No clear difference was observed in the phenolic and volatile profile as a function of co-inoculation with malolactic bacteria. For the bottled wines, specific sensory attributes contributed in the separation of the vineyards at all storage times. Furthermore, the overall quality judgement (OQJ) was significantly higher in all the wines at T12 storage time and for wines from Aldino. The sensory data were also combined with the chemical results to build multivariate models that exemplify how the components affect the wine’s final quality. These built models as fingerprint databases could provide assistance to the winemakers during production and also render useful for authenticity purposes.

 

1. Huglin, P.; IGI Global: Hershey, PA, USA, 2018; pp. 89–98.
2. Balottia, A.; Tscholl, S.; Vigl, L.E. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 50, p. 01031.
3. Pinot Blanc – Alto Adige Wine (altoadigewines.com)
4. Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
5. Poggesi, S., Dupas de Matos, A., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., & Boselli, E. (2021 Molecules, 26(20), 6245

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aakriti Darnal1,2*, Edoardo Longo1,2 , Simone Poggesi.1,2, Vakarė Merkyte.1,2, Marco Montali3, Emanuele Boselli.1,2

1. Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy,
3. Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Università 5, Bozen/Bolzano (Italy).

Contact the author*

Keywords

Pinot Blanc, pre-fermentative grape freezing, vineyard location, chemical profiles

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.