terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Abstract

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine. This report illustrates an example of a collaboration study where data were collected in a commercial winemaking setting to look into the factors that contribute to Pinot Blanc’s typicity. The Control samples used a similar conventional vinification to compare three vineyards (Aldino, Montagna and Klaus). Four distinct winemaking techniques were examined for the vineyard “Aldino” taking into consideration characteristics like pre-fermentative grape freezing and co-inoculation with lactic acid bacteria. Musts before inoculation, young wines after one month and four month of aging and bottled wines at 0, 6 and 12 months of storage were investigated. The samples were analyzed by an offline HPLC-MS for the determination of the phenolic compounds and by HS-SPME-GCxGC-ToF/MS for determining the volatile profiles. The sensory analysis of the bottled wines was performed using Quantitative Descriptive Analysis (QDA ®) [5]. The profile of phenolic and volatile compounds of both musts and young wines were peculiar of each vineyards. For Aldino vineyard, the main differentiating factor for the musts and the young wines was the pre-fermentative grape freezing. No clear difference was observed in the phenolic and volatile profile as a function of co-inoculation with malolactic bacteria. For the bottled wines, specific sensory attributes contributed in the separation of the vineyards at all storage times. Furthermore, the overall quality judgement (OQJ) was significantly higher in all the wines at T12 storage time and for wines from Aldino. The sensory data were also combined with the chemical results to build multivariate models that exemplify how the components affect the wine’s final quality. These built models as fingerprint databases could provide assistance to the winemakers during production and also render useful for authenticity purposes.

 

1. Huglin, P.; IGI Global: Hershey, PA, USA, 2018; pp. 89–98.
2. Balottia, A.; Tscholl, S.; Vigl, L.E. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 50, p. 01031.
3. Pinot Blanc – Alto Adige Wine (altoadigewines.com)
4. Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
5. Poggesi, S., Dupas de Matos, A., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., & Boselli, E. (2021 Molecules, 26(20), 6245

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aakriti Darnal1,2*, Edoardo Longo1,2 , Simone Poggesi.1,2, Vakarė Merkyte.1,2, Marco Montali3, Emanuele Boselli.1,2

1. Oenolab, NOI Techpark, Via Alessandro Volta 13, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy,
3. Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Università 5, Bozen/Bolzano (Italy).

Contact the author*

Keywords

Pinot Blanc, pre-fermentative grape freezing, vineyard location, chemical profiles

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.