OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Abstract

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine. Other aroma compounds, including a set of aldehydes and several γ-lactones, were also indicated to be related to ‘apricot’ aroma in that study, but the addition of these compounds to the reconstitution gave ambiguous results. 

To investigate these interactions, further reconstitution sensory studies were conducted. Firstly, in a wine-like model matrix, the aldehydes were found to suppress ‘apricot’ aroma intensity, while γ-lactones significantly enhanced the intensity of ‘apricot’, but only in the presence of a higher concentration of monoterpenes. Secondly, a neutral Chardonnay wine base spiked with the monoterpenes and γ-lactones together, or with only the monoterpenes added, was considered to have a similar ‘apricot’ aroma to a typical Viognier wine, whereas if spiked with only γ-lactones, then its aroma was not similar. Finally, a sensory difference study was conducted by comparing single or double strength γ-lactones in Chardonnay wine with added monoterpenes. No significant difference was found between the monoterpene-spiked Chardonnay wine and when γ-lactones were also added. Thus, γ-lactones are unlikely to impart or enhance ‘apricot’ aromas in white wine. 

Monoterpenes are grape-derived aroma compounds, but little is known regarding their accumulation in Viognier grapes. Having established the importance of monoterpenes to the perception of varietal ‘apricot’ aroma in Viognier wines, it is likely that controlling their concentration in the grapes can influence the ‘apricot’ aroma intensity in the resultant wine. 

To establish if clonal selection and harvest timing could be used as tools to modulate ‘apricot’ aromas in Viognier wines, vineyard studies were conducted. Eleven Viognier clones were assessed over three vintages. Large differences were found in the concentration of the monoterpenes between the clones. In a further study of four Viognier clones, two clones showed similar monoterpene concentration profiles throughout ripening, but the other clones were substantially lower in monoterpene concentration. Subsequently, a winemaking study was carried out to assess the effect of clone and grape ripeness on ‘apricot’ character in Viognier. Grapes from two Viognier clones were both picked at two ripening timepoints and from two wine regions with different climates.

Section for all references

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tracey Siebert

The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), SA, 5064, Australia

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

Analysis of some environmental factors and cultural practices that affect the production and quality of the Manto Negro, Callet and Prensal Blanc varieties

45 non irrigated vineyards distributed in the DO (Denomination) Pla i Llevant de Mallorca and the DO Binissalem Mallorca were used to investigate the characteristics of production and quality and their relationships certain environmental factors and cultural practices. The grape varieties investigated are autochthonous to the island of Mallorca, Manto Negro and Callet as red and Prensal Blanc as white. All plants were measured for four consecutive years in the main production and quality parameters. Among the environmental factors, the type of soil has been studied, more specifically its water retention capacity, the planting density, the age of the vineyard and the level of viral infection. The presence or absence of virus seems to have no effect on any component studied in the varieties studied. For the white variety Prensal Blanc age is negatively correlated with production and the number of bunches, nevertheless it does not cause any effect on the required quality parameters. However, for the red varieties Callet and Manto Negro, the age of the plantation is the variable that best correlates with the quality parameters, therefore the old vines should be the object of preservation by the viticulturists and winemakers in order to guarantee its contribution to the quality of the wines made with these varieties.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Vitivoltaics: overview of the impacts on grapevine performance, wine quality, design features and stakeholder perceptions

This multidisciplinary study investigates “”Vitivoltaics,”” where photovoltaic (PV) panels are integrated into vineyard systems to generate renewable energy while providing partial shade to grapevines.