OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Abstract

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine. Other aroma compounds, including a set of aldehydes and several γ-lactones, were also indicated to be related to ‘apricot’ aroma in that study, but the addition of these compounds to the reconstitution gave ambiguous results. 

To investigate these interactions, further reconstitution sensory studies were conducted. Firstly, in a wine-like model matrix, the aldehydes were found to suppress ‘apricot’ aroma intensity, while γ-lactones significantly enhanced the intensity of ‘apricot’, but only in the presence of a higher concentration of monoterpenes. Secondly, a neutral Chardonnay wine base spiked with the monoterpenes and γ-lactones together, or with only the monoterpenes added, was considered to have a similar ‘apricot’ aroma to a typical Viognier wine, whereas if spiked with only γ-lactones, then its aroma was not similar. Finally, a sensory difference study was conducted by comparing single or double strength γ-lactones in Chardonnay wine with added monoterpenes. No significant difference was found between the monoterpene-spiked Chardonnay wine and when γ-lactones were also added. Thus, γ-lactones are unlikely to impart or enhance ‘apricot’ aromas in white wine. 

Monoterpenes are grape-derived aroma compounds, but little is known regarding their accumulation in Viognier grapes. Having established the importance of monoterpenes to the perception of varietal ‘apricot’ aroma in Viognier wines, it is likely that controlling their concentration in the grapes can influence the ‘apricot’ aroma intensity in the resultant wine. 

To establish if clonal selection and harvest timing could be used as tools to modulate ‘apricot’ aromas in Viognier wines, vineyard studies were conducted. Eleven Viognier clones were assessed over three vintages. Large differences were found in the concentration of the monoterpenes between the clones. In a further study of four Viognier clones, two clones showed similar monoterpene concentration profiles throughout ripening, but the other clones were substantially lower in monoterpene concentration. Subsequently, a winemaking study was carried out to assess the effect of clone and grape ripeness on ‘apricot’ character in Viognier. Grapes from two Viognier clones were both picked at two ripening timepoints and from two wine regions with different climates.

Section for all references

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tracey Siebert

The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), SA, 5064, Australia

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

The zone in which the Cesanese vines are cultivated has a secular tradition of red wine­making. This zone is placed between the Simbruini mountains slopes and the surrounding hills and has pedologicai variability but a very homogeneous microclimate.

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.