OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Abstract

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine. Other aroma compounds, including a set of aldehydes and several γ-lactones, were also indicated to be related to ‘apricot’ aroma in that study, but the addition of these compounds to the reconstitution gave ambiguous results. 

To investigate these interactions, further reconstitution sensory studies were conducted. Firstly, in a wine-like model matrix, the aldehydes were found to suppress ‘apricot’ aroma intensity, while γ-lactones significantly enhanced the intensity of ‘apricot’, but only in the presence of a higher concentration of monoterpenes. Secondly, a neutral Chardonnay wine base spiked with the monoterpenes and γ-lactones together, or with only the monoterpenes added, was considered to have a similar ‘apricot’ aroma to a typical Viognier wine, whereas if spiked with only γ-lactones, then its aroma was not similar. Finally, a sensory difference study was conducted by comparing single or double strength γ-lactones in Chardonnay wine with added monoterpenes. No significant difference was found between the monoterpene-spiked Chardonnay wine and when γ-lactones were also added. Thus, γ-lactones are unlikely to impart or enhance ‘apricot’ aromas in white wine. 

Monoterpenes are grape-derived aroma compounds, but little is known regarding their accumulation in Viognier grapes. Having established the importance of monoterpenes to the perception of varietal ‘apricot’ aroma in Viognier wines, it is likely that controlling their concentration in the grapes can influence the ‘apricot’ aroma intensity in the resultant wine. 

To establish if clonal selection and harvest timing could be used as tools to modulate ‘apricot’ aromas in Viognier wines, vineyard studies were conducted. Eleven Viognier clones were assessed over three vintages. Large differences were found in the concentration of the monoterpenes between the clones. In a further study of four Viognier clones, two clones showed similar monoterpene concentration profiles throughout ripening, but the other clones were substantially lower in monoterpene concentration. Subsequently, a winemaking study was carried out to assess the effect of clone and grape ripeness on ‘apricot’ character in Viognier. Grapes from two Viognier clones were both picked at two ripening timepoints and from two wine regions with different climates.

Section for all references

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tracey Siebert

The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), SA, 5064, Australia

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.