OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Abstract

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine. Other aroma compounds, including a set of aldehydes and several γ-lactones, were also indicated to be related to ‘apricot’ aroma in that study, but the addition of these compounds to the reconstitution gave ambiguous results. 

To investigate these interactions, further reconstitution sensory studies were conducted. Firstly, in a wine-like model matrix, the aldehydes were found to suppress ‘apricot’ aroma intensity, while γ-lactones significantly enhanced the intensity of ‘apricot’, but only in the presence of a higher concentration of monoterpenes. Secondly, a neutral Chardonnay wine base spiked with the monoterpenes and γ-lactones together, or with only the monoterpenes added, was considered to have a similar ‘apricot’ aroma to a typical Viognier wine, whereas if spiked with only γ-lactones, then its aroma was not similar. Finally, a sensory difference study was conducted by comparing single or double strength γ-lactones in Chardonnay wine with added monoterpenes. No significant difference was found between the monoterpene-spiked Chardonnay wine and when γ-lactones were also added. Thus, γ-lactones are unlikely to impart or enhance ‘apricot’ aromas in white wine. 

Monoterpenes are grape-derived aroma compounds, but little is known regarding their accumulation in Viognier grapes. Having established the importance of monoterpenes to the perception of varietal ‘apricot’ aroma in Viognier wines, it is likely that controlling their concentration in the grapes can influence the ‘apricot’ aroma intensity in the resultant wine. 

To establish if clonal selection and harvest timing could be used as tools to modulate ‘apricot’ aromas in Viognier wines, vineyard studies were conducted. Eleven Viognier clones were assessed over three vintages. Large differences were found in the concentration of the monoterpenes between the clones. In a further study of four Viognier clones, two clones showed similar monoterpene concentration profiles throughout ripening, but the other clones were substantially lower in monoterpene concentration. Subsequently, a winemaking study was carried out to assess the effect of clone and grape ripeness on ‘apricot’ character in Viognier. Grapes from two Viognier clones were both picked at two ripening timepoints and from two wine regions with different climates.

Section for all references

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tracey Siebert

The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), SA, 5064, Australia

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

How do KOCs influence wine consumers’ decisions? Based on NLP analysis and questionnaire surveys on Xiaohongshu

In China’s social media-driven marketing landscape, user-generated content (UGC) plays a pivotal role in brand communication and consumer decision-making.

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Ecodesign tools and approaches in viticulture for professionals and learners, contributions of the Vitarbae project

The agro-ecological transition in winegrowing can benefit from the environmental assessment of practices to inform producers’ technical choices. life cycle assessment (lca) evaluates the environmental impact of a product over its entire life cycle. this paper takes a look at the tools available for the detailed assessment and eco-design of winegrowing practices, their uses and developments in the vitarbae research project (2023-2026). this project aims to establish and equip support and training courses for the agroecological transition in viticulture and fruit arboriculture.