terclim by ICS banner
IVES 9 IVES Conference Series 9 REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

Abstract

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

This study sought to evaluate molecularly imprinted polymers (MIPs) as a novel adsorbent developed specifically to target the removal of smoke-derived volatile phenols from wine. MIPs were initially added to a smoke tainted Pinot Noir wine, and their capacity to remove volatile phenols (by 40 to 50%) demonstrated by gas chromatography-mass spectrometry analysis of wine before and after treatment. A semi-commercial scale trial was subsequently undertaken and involved passing smoke tainted Chardonnay, rosé and Cabernet Sauvignon wines through a column packed with MIPs. The impact of treat-ment was evaluated by comparing the colour, volatile phenol composition and sensory profiles of wines, before and after treatment. Findings from this study afford winemakers valuable insight into the potential for MIPs to be used as a novel additive for the remediation of smoke tainted wine. Results from a kinetic study comparing the binding efficacy of different volatile phenols to MIPs will also be presented

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Yiming Huo¹, Renata Ristic¹, Richard Muhlack¹, Alex Cassegrain², Sylvia Baars³, Markus Herderich⁴, Kerry Wilkin-Son¹

1. The University of Adelaide
2. Cassegrain Wines
3. Amaea
4. The Australian Wine Research Institute

Contact the author*

Keywords

smoke taint, volatile phenols, volatile phenol glycoconjugates, wine sensory

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.