terclim by ICS banner
IVES 9 IVES Conference Series 9 TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Abstract

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay. Cold treatment (C: 14 days at 4 ° C), mannoproteins (M: 100 mL / HL), arabic gum (AG: 200 g / HL), carboxymethylcellulose (CMC: 10 g / HL) and carboxymethylcellulose + arabic gum (AG CMC + 10 g / HL + 200 g / HL) were tested. The chromatic properties, basic composition, polyphenolic indexes, and anthocyanins and derived-anthocyanin pigments contents were analyzed. The initial impact of the cold treatment was significant, but differences with the other wines were attenuated over time. At 15 days of the start of the essay, C wine had significantly lower color intensity and was much brighter and less red than control wine. C had too the lowest anthocyanin and proanthocyanidin contents. Anthocyanin profile of this wine shows an increase in the proportion of non-acylated glucosides and malvidin, and a decrease in the percentages of delphinidin, cyanidin and coumaryl-glucosides. Anyway, the typical anthocyanin profile of the variety was slightly modified. All wines showed low differences in color and polyphenolic composition at five months from stabilization. However, the contents of free anthocyanins were decreased by all stabilization treatments in relation to the control wines. CMC+GA wines had the highest color intensity and proanthocyanidin levels while M and CMC wines had the highest catechin contents. At this time, it was verified that the contents of free anthocyanins were diminished by all treatments in relation to the control wine. At 14 months, CMC+GA wines had the highest colour intensity, and the lowest luminosity (L*). Colour intensities of C and CMC wines had not differences respect to those of control wines. However, all wines showed precipitation of tartaric salts at 5 and at 14 months from stabilization. Therefore, the tested options (products and doses) do not stabilize red wines adequately.

 

1. Filipe-Ribeiro et al. Food Chemistry 360, 129996 (2021). 
2. Martínez-Pérez et al. Foods 9, 1275 (2020).
3. Rodrígues et al. Food Chemistry 131, 907–914 (2012).
4. Low et al. International Journal of Food Science and Technology 43, 1202–1216 (2008).
5. Moutounet et al. www.infowine.com 6/2 (2010).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gustavo González-Neves¹, Guzmán Favre¹, Diego Piccardo¹, María Pérez Serratosa²

1. Facultad de Agronomía, Universidad de la República. Montevideo. Uruguay.
2. Universidad de Córdoba. Córdoba. España.

Contact the author*

Keywords

anthocyanin, color intensity, tannins, Tannat

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.