terclim by ICS banner
IVES 9 IVES Conference Series 9 TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Abstract

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay. Cold treatment (C: 14 days at 4 ° C), mannoproteins (M: 100 mL / HL), arabic gum (AG: 200 g / HL), carboxymethylcellulose (CMC: 10 g / HL) and carboxymethylcellulose + arabic gum (AG CMC + 10 g / HL + 200 g / HL) were tested. The chromatic properties, basic composition, polyphenolic indexes, and anthocyanins and derived-anthocyanin pigments contents were analyzed. The initial impact of the cold treatment was significant, but differences with the other wines were attenuated over time. At 15 days of the start of the essay, C wine had significantly lower color intensity and was much brighter and less red than control wine. C had too the lowest anthocyanin and proanthocyanidin contents. Anthocyanin profile of this wine shows an increase in the proportion of non-acylated glucosides and malvidin, and a decrease in the percentages of delphinidin, cyanidin and coumaryl-glucosides. Anyway, the typical anthocyanin profile of the variety was slightly modified. All wines showed low differences in color and polyphenolic composition at five months from stabilization. However, the contents of free anthocyanins were decreased by all stabilization treatments in relation to the control wines. CMC+GA wines had the highest color intensity and proanthocyanidin levels while M and CMC wines had the highest catechin contents. At this time, it was verified that the contents of free anthocyanins were diminished by all treatments in relation to the control wine. At 14 months, CMC+GA wines had the highest colour intensity, and the lowest luminosity (L*). Colour intensities of C and CMC wines had not differences respect to those of control wines. However, all wines showed precipitation of tartaric salts at 5 and at 14 months from stabilization. Therefore, the tested options (products and doses) do not stabilize red wines adequately.

 

1. Filipe-Ribeiro et al. Food Chemistry 360, 129996 (2021). 
2. Martínez-Pérez et al. Foods 9, 1275 (2020).
3. Rodrígues et al. Food Chemistry 131, 907–914 (2012).
4. Low et al. International Journal of Food Science and Technology 43, 1202–1216 (2008).
5. Moutounet et al. www.infowine.com 6/2 (2010).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gustavo González-Neves¹, Guzmán Favre¹, Diego Piccardo¹, María Pérez Serratosa²

1. Facultad de Agronomía, Universidad de la República. Montevideo. Uruguay.
2. Universidad de Córdoba. Córdoba. España.

Contact the author*

Keywords

anthocyanin, color intensity, tannins, Tannat

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches. Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).