terclim by ICS banner
IVES 9 IVES Conference Series 9 TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Abstract

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay. Cold treatment (C: 14 days at 4 ° C), mannoproteins (M: 100 mL / HL), arabic gum (AG: 200 g / HL), carboxymethylcellulose (CMC: 10 g / HL) and carboxymethylcellulose + arabic gum (AG CMC + 10 g / HL + 200 g / HL) were tested. The chromatic properties, basic composition, polyphenolic indexes, and anthocyanins and derived-anthocyanin pigments contents were analyzed. The initial impact of the cold treatment was significant, but differences with the other wines were attenuated over time. At 15 days of the start of the essay, C wine had significantly lower color intensity and was much brighter and less red than control wine. C had too the lowest anthocyanin and proanthocyanidin contents. Anthocyanin profile of this wine shows an increase in the proportion of non-acylated glucosides and malvidin, and a decrease in the percentages of delphinidin, cyanidin and coumaryl-glucosides. Anyway, the typical anthocyanin profile of the variety was slightly modified. All wines showed low differences in color and polyphenolic composition at five months from stabilization. However, the contents of free anthocyanins were decreased by all stabilization treatments in relation to the control wines. CMC+GA wines had the highest color intensity and proanthocyanidin levels while M and CMC wines had the highest catechin contents. At this time, it was verified that the contents of free anthocyanins were diminished by all treatments in relation to the control wine. At 14 months, CMC+GA wines had the highest colour intensity, and the lowest luminosity (L*). Colour intensities of C and CMC wines had not differences respect to those of control wines. However, all wines showed precipitation of tartaric salts at 5 and at 14 months from stabilization. Therefore, the tested options (products and doses) do not stabilize red wines adequately.

 

1. Filipe-Ribeiro et al. Food Chemistry 360, 129996 (2021). 
2. Martínez-Pérez et al. Foods 9, 1275 (2020).
3. Rodrígues et al. Food Chemistry 131, 907–914 (2012).
4. Low et al. International Journal of Food Science and Technology 43, 1202–1216 (2008).
5. Moutounet et al. www.infowine.com 6/2 (2010).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gustavo González-Neves¹, Guzmán Favre¹, Diego Piccardo¹, María Pérez Serratosa²

1. Facultad de Agronomía, Universidad de la República. Montevideo. Uruguay.
2. Universidad de Córdoba. Córdoba. España.

Contact the author*

Keywords

anthocyanin, color intensity, tannins, Tannat

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.