terclim by ICS banner
IVES 9 IVES Conference Series 9 THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Abstract

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days. Additionally, samples of seeds and skins from each cultivar were separately macerated in a wine-like solution for 15 days. All treatments were made by triplicate. The contents of anthocyanins and tannins were analysed along macerations spectrophotometrically (tannins reactive to methyl cellulose, total anthocyanin) and using a HPLC-DAD system (pigments, flavan-3-ols). During the first 3 days of winemaking, Arinarnoa and Tannat musts had similar tannin contents that were much higher than those in Marselan musts. But at day 5, Arinarnoa had reached its maximum tannin content while in Tannat and Marselan it continued to increase until day 7. At this point, Marselan had as much tannin contents as Arinarnoa while Tannat had much higher concentrations. Along the post-fermetative macerations, Tannat tannin contents decreased while they continued to increase in Marselan. Thus, from day 13 to 15 of maceration Marselan and Tannat had similar tannin contents that were at devatting significantly higher than in Arinarnoa. The addition of skin tannins did not significantly increase the tannin concentrations of wines. Noteworthy, just in Marselan, the maceration enzymes significantly increased the anthocyanin and particularly the tannins concentrations of musts relative to the other treatments in a magnitude that increased with the maceration time. The macerations in wine-like solutions showed that the extraction of anthocyanins and particularly of skin tannins was very low in Marselan related to the observed in Arinarnoa and Tannat, while the seed tannins were extracted at similar rate in the three cultivars. This research proved that the high proportion of seed tannins in Marselan wines is due to a limited extraction of these compounds from the skins.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mecha-nisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. Carlin, S.; Lotti, C.; Correggi, L.; Mattivi, F.; Arapitsas, P.; Vrhovšek, U. Measurement of the Effect of Accelerated Aging on the Aromatic Compounds of Gewürztraminer and Teroldego Wines, Using a SPE-GC-MS/MS Protocol. Metabolites 2022, 12, 180.
4. Piergiovanni, M.; Carlin, S.; Lotti, C.; Vrhovsek, U.; Mattivi, F. Development of a Fully Automated Method HS-SPME-GC-MS/MS for the Determination of Odor-Active Carbonyls in Wines: A “Green” Approach to Improve Robustness and Productivity in the Oenological Analytical Chemistry. J. Agric. Food Chem. 2023.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Yogesh Kumar¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Alberto De Iseppi1, Maurizio Pier-giovanni3,4, Silvia Carlin⁵, Maria Alessandra Paissoni⁶, Paola Piombino⁷, Giuseppina Paola Parpinello⁸, Fulvio Mattivi4,5, Maurizio Ugliano⁹ Andrea Curioni1,2

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), 43124, Parma (PR), Italy
4. Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige (TN) Italy
5. Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all’Adige (TN) Italy
6. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
7. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avellino (AV), Italy
8. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena (FC), Italy
9. University of Verona, Department of Biotechnology, 37039, San Pietro in Cariano (VR) Italy

Contact the author*

Keywords

volatiles,macromolecules, fining, quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].