terclim by ICS banner
IVES 9 IVES Conference Series 9 TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Abstract

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effervescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most pres-tigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Measurements of dissolved CO₂ concentrations were done on a collection of 13 successive champagne vintages, stored in standard 75 cL bottles and 150 cL magnums, showing prolonged aging on lees ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO₂ much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multi-variable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO₂ and the subsequent CO₂ pressure in the sealed bottles during champagne aging. The CO₂ mass transfer coefficients through the crown caps used to seal champagne bottle prior the 2000s was thus approached in situ, with a global average value m3 s-1 [3]. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO₂ bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging on lees, which combines the various relevant parameters at play, including the geometric parameters of the bottle [3]. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO₂ and therefore the bubbling capacity of champagne during tasting.

 

1. G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise. Eur. Phys. J Special Topics, 226, 3-116, 2017
2. G. Liger-Belair, D. Carvajal-Pérez, C. Cilindre, J. Facque, M. Brevot, F. Litoux-Desrues, V. Chaperon, R. Geoffroy, Evidence for moderate losses of dissolved CO₂ during aging on lees of a champagne prestige cuvee. J. Food Engineering, 233, 40-48, 2018
3. G. Liger-Belair, C. Khenniche, C. Poteau, C. Bailleul, V. Thollin, C. Cilindre, Losses of yeast-fermented carbon dioxide during prolonged champagne aging: Yes, the bottle size does matter! submitted, 2023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gérard Liger-Belair¹, Chloé Khenniche1,2, Clara Poteau², Carine Bailleul², Virginie Thollin³, Clara Cilindre¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims, France
2. Champagne Castelnau – 5, Rue Gosset, 51100 Reims, France
3. PE.DI France – 2, Avenue de New York, 51530 Pierry, France

Contact the author*

Keywords

Carbone dioxide, Champagne, Aging on lees, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.