terclim by ICS banner
IVES 9 IVES Conference Series 9 TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Abstract

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effervescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most pres-tigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Measurements of dissolved CO₂ concentrations were done on a collection of 13 successive champagne vintages, stored in standard 75 cL bottles and 150 cL magnums, showing prolonged aging on lees ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO₂ much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multi-variable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO₂ and the subsequent CO₂ pressure in the sealed bottles during champagne aging. The CO₂ mass transfer coefficients through the crown caps used to seal champagne bottle prior the 2000s was thus approached in situ, with a global average value m3 s-1 [3]. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO₂ bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging on lees, which combines the various relevant parameters at play, including the geometric parameters of the bottle [3]. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO₂ and therefore the bubbling capacity of champagne during tasting.

 

1. G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise. Eur. Phys. J Special Topics, 226, 3-116, 2017
2. G. Liger-Belair, D. Carvajal-Pérez, C. Cilindre, J. Facque, M. Brevot, F. Litoux-Desrues, V. Chaperon, R. Geoffroy, Evidence for moderate losses of dissolved CO₂ during aging on lees of a champagne prestige cuvee. J. Food Engineering, 233, 40-48, 2018
3. G. Liger-Belair, C. Khenniche, C. Poteau, C. Bailleul, V. Thollin, C. Cilindre, Losses of yeast-fermented carbon dioxide during prolonged champagne aging: Yes, the bottle size does matter! submitted, 2023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gérard Liger-Belair¹, Chloé Khenniche1,2, Clara Poteau², Carine Bailleul², Virginie Thollin³, Clara Cilindre¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims, France
2. Champagne Castelnau – 5, Rue Gosset, 51100 Reims, France
3. PE.DI France – 2, Avenue de New York, 51530 Pierry, France

Contact the author*

Keywords

Carbone dioxide, Champagne, Aging on lees, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.