terclim by ICS banner
IVES 9 IVES Conference Series 9 TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Abstract

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effervescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most pres-tigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Measurements of dissolved CO₂ concentrations were done on a collection of 13 successive champagne vintages, stored in standard 75 cL bottles and 150 cL magnums, showing prolonged aging on lees ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO₂ much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multi-variable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO₂ and the subsequent CO₂ pressure in the sealed bottles during champagne aging. The CO₂ mass transfer coefficients through the crown caps used to seal champagne bottle prior the 2000s was thus approached in situ, with a global average value m3 s-1 [3]. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO₂ bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging on lees, which combines the various relevant parameters at play, including the geometric parameters of the bottle [3]. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO₂ and therefore the bubbling capacity of champagne during tasting.

 

1. G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise. Eur. Phys. J Special Topics, 226, 3-116, 2017
2. G. Liger-Belair, D. Carvajal-Pérez, C. Cilindre, J. Facque, M. Brevot, F. Litoux-Desrues, V. Chaperon, R. Geoffroy, Evidence for moderate losses of dissolved CO₂ during aging on lees of a champagne prestige cuvee. J. Food Engineering, 233, 40-48, 2018
3. G. Liger-Belair, C. Khenniche, C. Poteau, C. Bailleul, V. Thollin, C. Cilindre, Losses of yeast-fermented carbon dioxide during prolonged champagne aging: Yes, the bottle size does matter! submitted, 2023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gérard Liger-Belair¹, Chloé Khenniche1,2, Clara Poteau², Carine Bailleul², Virginie Thollin³, Clara Cilindre¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims, France
2. Champagne Castelnau – 5, Rue Gosset, 51100 Reims, France
3. PE.DI France – 2, Avenue de New York, 51530 Pierry, France

Contact the author*

Keywords

Carbone dioxide, Champagne, Aging on lees, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.