terclim by ICS banner
IVES 9 IVES Conference Series 9 TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Abstract

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effervescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most pres-tigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Measurements of dissolved CO₂ concentrations were done on a collection of 13 successive champagne vintages, stored in standard 75 cL bottles and 150 cL magnums, showing prolonged aging on lees ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO₂ much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multi-variable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO₂ and the subsequent CO₂ pressure in the sealed bottles during champagne aging. The CO₂ mass transfer coefficients through the crown caps used to seal champagne bottle prior the 2000s was thus approached in situ, with a global average value m3 s-1 [3]. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO₂ bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging on lees, which combines the various relevant parameters at play, including the geometric parameters of the bottle [3]. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO₂ and therefore the bubbling capacity of champagne during tasting.

 

1. G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise. Eur. Phys. J Special Topics, 226, 3-116, 2017
2. G. Liger-Belair, D. Carvajal-Pérez, C. Cilindre, J. Facque, M. Brevot, F. Litoux-Desrues, V. Chaperon, R. Geoffroy, Evidence for moderate losses of dissolved CO₂ during aging on lees of a champagne prestige cuvee. J. Food Engineering, 233, 40-48, 2018
3. G. Liger-Belair, C. Khenniche, C. Poteau, C. Bailleul, V. Thollin, C. Cilindre, Losses of yeast-fermented carbon dioxide during prolonged champagne aging: Yes, the bottle size does matter! submitted, 2023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gérard Liger-Belair¹, Chloé Khenniche1,2, Clara Poteau², Carine Bailleul², Virginie Thollin³, Clara Cilindre¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims, France
2. Champagne Castelnau – 5, Rue Gosset, 51100 Reims, France
3. PE.DI France – 2, Avenue de New York, 51530 Pierry, France

Contact the author*

Keywords

Carbone dioxide, Champagne, Aging on lees, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.