terclim by ICS banner
IVES 9 IVES Conference Series 9 TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Abstract

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effervescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most pres-tigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Measurements of dissolved CO₂ concentrations were done on a collection of 13 successive champagne vintages, stored in standard 75 cL bottles and 150 cL magnums, showing prolonged aging on lees ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO₂ much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multi-variable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO₂ and the subsequent CO₂ pressure in the sealed bottles during champagne aging. The CO₂ mass transfer coefficients through the crown caps used to seal champagne bottle prior the 2000s was thus approached in situ, with a global average value m3 s-1 [3]. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO₂ bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging on lees, which combines the various relevant parameters at play, including the geometric parameters of the bottle [3]. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO₂ and therefore the bubbling capacity of champagne during tasting.

 

1. G. Liger-Belair, Effervescence in champagne and sparkling wines: From grape harvest to bubble rise. Eur. Phys. J Special Topics, 226, 3-116, 2017
2. G. Liger-Belair, D. Carvajal-Pérez, C. Cilindre, J. Facque, M. Brevot, F. Litoux-Desrues, V. Chaperon, R. Geoffroy, Evidence for moderate losses of dissolved CO₂ during aging on lees of a champagne prestige cuvee. J. Food Engineering, 233, 40-48, 2018
3. G. Liger-Belair, C. Khenniche, C. Poteau, C. Bailleul, V. Thollin, C. Cilindre, Losses of yeast-fermented carbon dioxide during prolonged champagne aging: Yes, the bottle size does matter! submitted, 2023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gérard Liger-Belair¹, Chloé Khenniche1,2, Clara Poteau², Carine Bailleul², Virginie Thollin³, Clara Cilindre¹

1. GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, 51697 Reims, France
2. Champagne Castelnau – 5, Rue Gosset, 51100 Reims, France
3. PE.DI France – 2, Avenue de New York, 51530 Pierry, France

Contact the author*

Keywords

Carbone dioxide, Champagne, Aging on lees, Effervescence

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.