terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

Abstract

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³. Up to now, this innovative approach has been carried out successfully on isothermal fermentations1,2. Elucidating the role of anisothermal fermentation temperature profiles is a crucial issue that may lead to a deeper understanding of the influence of temperature on yeast metabolism in relation to the synthesis of aromatic molecules. In this study, results from different temperature control strategies of fermentation with increasing and decreasing profiles are explored. These fermentations were carried out on a laboratory scale with the online monitoring tool for alcoholic fermentation leading to a powerful dataset concerning higher alcohols, acetate and ethyl esters. The anisothermal control of the fermentation temperature shows that the production of higher alcohols is slowed down with the lowering of the temperature profiles and inversely for the ascending profiles. For isoamyl acetate and ethyl hexanoate, with ascending temperature profiles, larger losses are entailed with increasing temperature during fermentation and therefore the concentration in the liquid decreases. Obviously, the phenomenon is reversed for the descending profiles which allow to combine a better production of esters with an optimized conservation in liquid phase until the end of the alcoholic fermentation while minimizing the synthesis of higher alcohols. In strong concentrations, these alcohols may represent an organoleptic defect, especially for the distillation wines in Charente⁴. After the fermentation step, the wines were microdistilled with their lees in order to reproduce the conditions of distillation in Charente. Thanks to this step, it was possible to note the aromatic richness of the lees concerning the heavy ethyl esters⁵. Moreover, the impact of the anisothermal temperature profiles quoted above is also confirmed on the aromas released from the lees by the heating process of the distillation.

 

1. Mouret, J. R.; Perez, M.; Angenieux, M.; Nicolle, P.; Farines, V.; Sablayrolles, J. M. Online-Based Kinetic Analysis of Higher Alcohol and Ester Synthesis During Winemaking Fermentations. Food Bioprocess Technol 2014, 7 (5), 1235–1245. https://doi. org/10.1007/s11947-013-1089-5.
2. Mouret, J. R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J. M. Kinetic Analysis and Gas–Liquid Balances of the Production of Fermentative Aromas during Winemaking Fermentations: Effect of Assimilable Nitrogen and Temperature. Food Research International 2014, 62, 1–10. https://doi.org/10.1016/j.foodres.2014.02.044.
3. Mouret, J.-R.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.-M. Study of Oenological Fermentation: Which Strategy and Which Tools? Fermentation 2021, 7 (3), 155. https://doi.org/10.3390/fermentation7030155.
4. Sarvarova, N. N.; Cherkashina, Yu. A.; Evgen’ev, M. I. Application of Chromatographic Methods to the Determination of Cognac Quality Indicators. Journal of Analytical Chemistry 2011, 66 (12), 1190–1195. https://doi.org/10.1134/S1061934811120094.
5. Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R. Parameters Affecting Ethyl Es-ter Production by Saccharomyces Cerevisiae during Fermentation. Applied and Environmental Microbiology 2008, 74 (2), 454–461. https://doi.org/10.1128/AEM.01616-07.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Charlie Guittin1,2, Faïza Maçna¹, Christian Picou¹, Marc Perez¹, Adeline Barreau², Xavier Poitou², Jean-Roch Mouret¹, Vincent Farines¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. R&D department, Jas Hennessy & Co, Cognac, France

Contact the author*

Keywords

Online monitoring of aromas, Anisothermal temperature, Lees, Distillation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.