terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

Abstract

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³. Up to now, this innovative approach has been carried out successfully on isothermal fermentations1,2. Elucidating the role of anisothermal fermentation temperature profiles is a crucial issue that may lead to a deeper understanding of the influence of temperature on yeast metabolism in relation to the synthesis of aromatic molecules. In this study, results from different temperature control strategies of fermentation with increasing and decreasing profiles are explored. These fermentations were carried out on a laboratory scale with the online monitoring tool for alcoholic fermentation leading to a powerful dataset concerning higher alcohols, acetate and ethyl esters. The anisothermal control of the fermentation temperature shows that the production of higher alcohols is slowed down with the lowering of the temperature profiles and inversely for the ascending profiles. For isoamyl acetate and ethyl hexanoate, with ascending temperature profiles, larger losses are entailed with increasing temperature during fermentation and therefore the concentration in the liquid decreases. Obviously, the phenomenon is reversed for the descending profiles which allow to combine a better production of esters with an optimized conservation in liquid phase until the end of the alcoholic fermentation while minimizing the synthesis of higher alcohols. In strong concentrations, these alcohols may represent an organoleptic defect, especially for the distillation wines in Charente⁴. After the fermentation step, the wines were microdistilled with their lees in order to reproduce the conditions of distillation in Charente. Thanks to this step, it was possible to note the aromatic richness of the lees concerning the heavy ethyl esters⁵. Moreover, the impact of the anisothermal temperature profiles quoted above is also confirmed on the aromas released from the lees by the heating process of the distillation.

 

1. Mouret, J. R.; Perez, M.; Angenieux, M.; Nicolle, P.; Farines, V.; Sablayrolles, J. M. Online-Based Kinetic Analysis of Higher Alcohol and Ester Synthesis During Winemaking Fermentations. Food Bioprocess Technol 2014, 7 (5), 1235–1245. https://doi. org/10.1007/s11947-013-1089-5.
2. Mouret, J. R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J. M. Kinetic Analysis and Gas–Liquid Balances of the Production of Fermentative Aromas during Winemaking Fermentations: Effect of Assimilable Nitrogen and Temperature. Food Research International 2014, 62, 1–10. https://doi.org/10.1016/j.foodres.2014.02.044.
3. Mouret, J.-R.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.-M. Study of Oenological Fermentation: Which Strategy and Which Tools? Fermentation 2021, 7 (3), 155. https://doi.org/10.3390/fermentation7030155.
4. Sarvarova, N. N.; Cherkashina, Yu. A.; Evgen’ev, M. I. Application of Chromatographic Methods to the Determination of Cognac Quality Indicators. Journal of Analytical Chemistry 2011, 66 (12), 1190–1195. https://doi.org/10.1134/S1061934811120094.
5. Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R. Parameters Affecting Ethyl Es-ter Production by Saccharomyces Cerevisiae during Fermentation. Applied and Environmental Microbiology 2008, 74 (2), 454–461. https://doi.org/10.1128/AEM.01616-07.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Charlie Guittin1,2, Faïza Maçna¹, Christian Picou¹, Marc Perez¹, Adeline Barreau², Xavier Poitou², Jean-Roch Mouret¹, Vincent Farines¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. R&D department, Jas Hennessy & Co, Cognac, France

Contact the author*

Keywords

Online monitoring of aromas, Anisothermal temperature, Lees, Distillation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.