terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

Abstract

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³. Up to now, this innovative approach has been carried out successfully on isothermal fermentations1,2. Elucidating the role of anisothermal fermentation temperature profiles is a crucial issue that may lead to a deeper understanding of the influence of temperature on yeast metabolism in relation to the synthesis of aromatic molecules. In this study, results from different temperature control strategies of fermentation with increasing and decreasing profiles are explored. These fermentations were carried out on a laboratory scale with the online monitoring tool for alcoholic fermentation leading to a powerful dataset concerning higher alcohols, acetate and ethyl esters. The anisothermal control of the fermentation temperature shows that the production of higher alcohols is slowed down with the lowering of the temperature profiles and inversely for the ascending profiles. For isoamyl acetate and ethyl hexanoate, with ascending temperature profiles, larger losses are entailed with increasing temperature during fermentation and therefore the concentration in the liquid decreases. Obviously, the phenomenon is reversed for the descending profiles which allow to combine a better production of esters with an optimized conservation in liquid phase until the end of the alcoholic fermentation while minimizing the synthesis of higher alcohols. In strong concentrations, these alcohols may represent an organoleptic defect, especially for the distillation wines in Charente⁴. After the fermentation step, the wines were microdistilled with their lees in order to reproduce the conditions of distillation in Charente. Thanks to this step, it was possible to note the aromatic richness of the lees concerning the heavy ethyl esters⁵. Moreover, the impact of the anisothermal temperature profiles quoted above is also confirmed on the aromas released from the lees by the heating process of the distillation.

 

1. Mouret, J. R.; Perez, M.; Angenieux, M.; Nicolle, P.; Farines, V.; Sablayrolles, J. M. Online-Based Kinetic Analysis of Higher Alcohol and Ester Synthesis During Winemaking Fermentations. Food Bioprocess Technol 2014, 7 (5), 1235–1245. https://doi. org/10.1007/s11947-013-1089-5.
2. Mouret, J. R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J. M. Kinetic Analysis and Gas–Liquid Balances of the Production of Fermentative Aromas during Winemaking Fermentations: Effect of Assimilable Nitrogen and Temperature. Food Research International 2014, 62, 1–10. https://doi.org/10.1016/j.foodres.2014.02.044.
3. Mouret, J.-R.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.-M. Study of Oenological Fermentation: Which Strategy and Which Tools? Fermentation 2021, 7 (3), 155. https://doi.org/10.3390/fermentation7030155.
4. Sarvarova, N. N.; Cherkashina, Yu. A.; Evgen’ev, M. I. Application of Chromatographic Methods to the Determination of Cognac Quality Indicators. Journal of Analytical Chemistry 2011, 66 (12), 1190–1195. https://doi.org/10.1134/S1061934811120094.
5. Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R. Parameters Affecting Ethyl Es-ter Production by Saccharomyces Cerevisiae during Fermentation. Applied and Environmental Microbiology 2008, 74 (2), 454–461. https://doi.org/10.1128/AEM.01616-07.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Charlie Guittin1,2, Faïza Maçna¹, Christian Picou¹, Marc Perez¹, Adeline Barreau², Xavier Poitou², Jean-Roch Mouret¹, Vincent Farines¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. R&D department, Jas Hennessy & Co, Cognac, France

Contact the author*

Keywords

Online monitoring of aromas, Anisothermal temperature, Lees, Distillation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.