terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

Abstract

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³. Up to now, this innovative approach has been carried out successfully on isothermal fermentations1,2. Elucidating the role of anisothermal fermentation temperature profiles is a crucial issue that may lead to a deeper understanding of the influence of temperature on yeast metabolism in relation to the synthesis of aromatic molecules. In this study, results from different temperature control strategies of fermentation with increasing and decreasing profiles are explored. These fermentations were carried out on a laboratory scale with the online monitoring tool for alcoholic fermentation leading to a powerful dataset concerning higher alcohols, acetate and ethyl esters. The anisothermal control of the fermentation temperature shows that the production of higher alcohols is slowed down with the lowering of the temperature profiles and inversely for the ascending profiles. For isoamyl acetate and ethyl hexanoate, with ascending temperature profiles, larger losses are entailed with increasing temperature during fermentation and therefore the concentration in the liquid decreases. Obviously, the phenomenon is reversed for the descending profiles which allow to combine a better production of esters with an optimized conservation in liquid phase until the end of the alcoholic fermentation while minimizing the synthesis of higher alcohols. In strong concentrations, these alcohols may represent an organoleptic defect, especially for the distillation wines in Charente⁴. After the fermentation step, the wines were microdistilled with their lees in order to reproduce the conditions of distillation in Charente. Thanks to this step, it was possible to note the aromatic richness of the lees concerning the heavy ethyl esters⁵. Moreover, the impact of the anisothermal temperature profiles quoted above is also confirmed on the aromas released from the lees by the heating process of the distillation.

 

1. Mouret, J. R.; Perez, M.; Angenieux, M.; Nicolle, P.; Farines, V.; Sablayrolles, J. M. Online-Based Kinetic Analysis of Higher Alcohol and Ester Synthesis During Winemaking Fermentations. Food Bioprocess Technol 2014, 7 (5), 1235–1245. https://doi. org/10.1007/s11947-013-1089-5.
2. Mouret, J. R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J. M. Kinetic Analysis and Gas–Liquid Balances of the Production of Fermentative Aromas during Winemaking Fermentations: Effect of Assimilable Nitrogen and Temperature. Food Research International 2014, 62, 1–10. https://doi.org/10.1016/j.foodres.2014.02.044.
3. Mouret, J.-R.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.-M. Study of Oenological Fermentation: Which Strategy and Which Tools? Fermentation 2021, 7 (3), 155. https://doi.org/10.3390/fermentation7030155.
4. Sarvarova, N. N.; Cherkashina, Yu. A.; Evgen’ev, M. I. Application of Chromatographic Methods to the Determination of Cognac Quality Indicators. Journal of Analytical Chemistry 2011, 66 (12), 1190–1195. https://doi.org/10.1134/S1061934811120094.
5. Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R. Parameters Affecting Ethyl Es-ter Production by Saccharomyces Cerevisiae during Fermentation. Applied and Environmental Microbiology 2008, 74 (2), 454–461. https://doi.org/10.1128/AEM.01616-07.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Charlie Guittin1,2, Faïza Maçna¹, Christian Picou¹, Marc Perez¹, Adeline Barreau², Xavier Poitou², Jean-Roch Mouret¹, Vincent Farines¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. R&D department, Jas Hennessy & Co, Cognac, France

Contact the author*

Keywords

Online monitoring of aromas, Anisothermal temperature, Lees, Distillation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.