terclim by ICS banner
IVES 9 IVES Conference Series 9 USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

Abstract

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process. Cortese and Arneis grape juices were kept at 4 °C on their lees (manually suspended twice a day) during three different periods (7, 14, 21 days) and then compared to a control without stabulation. After the stabulation period, the lees were discarded and the juices fermented, cold stabilized, and bottled. The analyses were carried out at the end of stabulation, of the alcoholic fermentation and after one month from bottling. The chemical data obtained were supported with sensory analysis done by a trained panel on the wines after fermentation and bottling. The results showed that the cold liquid stabulation has an impact on the acidic composition of the produced wines for both varieties. The low temperature affected tartaric acid content, being it found lower already after 7 days of stabulation. Nevertheless, pH decreased in the samples stabulated for the longest time (21 days). Differences have been found on TPI of wines, even if in a different extent depending on the grape variety. In fact, on Arneis samples an increasing trend of TPI alongside antioxidant capacity was found, meanwhile in Cortese the stabulation led to a decrease in TPI, without differences in the antioxidant capacity among stabulated samples. This behaviour may be connected to the grape phenolic composition. After bottling, the produced wines were not sensory perceived different in terms of bitterness, astringency, and body. Nevertheless, Cortese stabulated wines at 14 and 21 days were preferred in terms of overall judgement with respect to control, in agreement with the higher content of volatile compounds. An increasing liking trend was found also for Arneis, whereas the highest content of volatile compounds corresponded to 7 days stabulation

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Camilla De Paolis¹, Andrea Zava¹, Giulia Motta¹, Lorenzo Ferrero¹, Simone Giacosa¹, Susana Río Segade¹, Vincenzo Gerbi ¹, Luca Rolle¹, Maria Alessandra Paissoni¹

1. University of Torino

Contact the author*

Keywords

pre-fermentative technique, polyphenolic compounds, volatiles compounds, antioxidant power

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.