GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Evaluation of vineyards, fruit and wine affected by wild fire smoke

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Abstract

Context and purpose of study ‐ Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke, and whether or not smoke taint flavors will result when fruit is fermented into wine. Phenolic smoke compounds bind with sugars in the fruit with enzymes (glycosyltransferases) and are then hydrolyzed during maturation, wine making and even in a taster’s mouth. Testing the fruit for volatile phenols and glycosides is both expensive and not completely predictive as standards are not well defined for damage based on smoke chemical content. Micro‐vinification even with partially ripened fruit is an inexpensive and fairly accurate method to quickly determine if fruit has a potential smoke taint problem. Wines can then be tasted for the presence of off flavors. Developing standards based on volatile phenolic and glycocide concentrations to predict whether fruit is affected by smoke and how wine will taste when vinified would be very helpful for accepting or rejecting fruit from affected areas.

Materials and methods ‐ Following wild fire smoke exposure, fruit was sampled and micro‐vinified during veraison and again 2 weeks before harvest from 13 Cabernet sauvignon vineyards in a transect 25 km across Lake County, California. A control vineyard unexposed to wildfire smoke was sampled outside of the area. Sub samples from each vineyard were analyzed immediately for guaiacol and 4‐methyl guaiacol. 19 liter wine lots were then microvinified, stabilized and bottled for each vineyard for both sampling dates. The wine was analyzed for volatile phenols and glycoside compounds (guaiacol and 4‐methyl guaiacol, methyl cresol, 4‐methyl syringol, o‐cresol, p‐cresol, syringol, syringol gentiobioside, methyl syringol gentiobioside, phenol rutinoside, cresol rutinoside, guiaocol rutinoside and methyl guaiacol rutinoside). A 14 member tasting panel evaluated the wines for smoke flavors. Panel members were able to detect off flavors in both sample sets, and tainted wines were highly correlated with elevated concentrations of volatile phenols and glycosides. GIS data of vineyard proximity to the fire, elevation, temperature and wind direction and speed were used to conduct multivariate analysis of factors affecting wine smoke compound chemicals and flavor impacts on wine.

Results ‐ Not all wines were affected; in this study, 6µ/l guaiacol was the threshold of detection for off flavors in wine by most tasters. Off flavors were much stronger in the wines made from riper fruit, as were the concentration of smoke compounds, by as much as six fold compared to unfermented fruit. Wind direction and speed, proximity to active fires, and temperature are the factors that are most highly correlated to smoke damage to fruit near wildfires. The control wine sample had no off flavors and no volatile phenols were detected. By contrast, some sites close to the edge of fires and immediately downwind were very heavily affected, and contained high levels of smoke taint compounds. This study will help to better understand when vineyards are most at risk to wild fire smoke damage, and how micro‐vinification may be a reliable and quick way to predict fermentation outcomes before harvest in vineyards affected by wildfire smoke.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Glenn MCGOURTY (1), Michael I. JONES (1), Anita OBERHOLSTER (2), Ryan KEIFFER (1)

(1) University of California Cooperative Extension Mendocino County, 890 North Bush Street, Ukiah, Ca. 95482
(2) University of California Davis Department of Viticulture and Enology, Davis,California, 95616

Contact the author

Keywords

Wild fire smoke, smoke taint in wine, volatile phenols, glycocides , guaiacol, 4‐methyl guaiacol

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.