terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

Abstract

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

Measurements and dosages were done in 50 press wines and their associated free-run wines. Wines are monovarietal batch from: cabernet-sauvignon and merlot from Saint-Estèphe, Médoc, France. The vintage is 2021. The production of wines was done in the estate to the classical process. The grapes, picked up and harvested by hand, were destemmed, sorted using an optical sorter and crushed. During vinification, extractions were adapted to each batch by daily tastings. Maceration did not exceed 21 days. After pressing, the wines were kept in oak-barrels. Three months after pressing, all the wines were tasted and were categorized according to their aptitude to be incorporated in the blend of the premium wine. Samples were kept at 12°C in bottles.
For the study of the aromatic composition: dimethyl sulphide (DMS) and its precursors (HS-SPME-GC-MS); higher alcohols (GC-FID) and 33 esters (HS-SPME-GC-MS) were measured. Concerning the analysis of phenolic compounds: anthocyanin monomers (HPLC-UV) and flavonols (HPLC-fluo.) were determined. Indices such as IPT, CieLAB, pH, AT have also been measured.
As expected, the results showed a significant difference between the two grape varieties. For each grape variety, PCA suggest differences between the press wines and the drop wines for all compounds. For the aromatic compounds, total tannins and flavonols: the press wines are more concentrated than the free-run wines. There are no significant differences between the press and free-run wines concerning anthocyanins. More statistical analysis permits to highlight unexpected separation of compounds according to the pressing step. The data also highlight links between the composition and the sensorial categorization.
In conclusion, the study permits to propose a first molecular database and to explore the origins of the sensorial categorization of that wines.
The experiment is renewed during the 2022 harvest and new compounds are added to the database.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Margot Larose1,2; Michael Jourdes¹; Eric Boissenot³, Vincent Decup²; Stéphanie Marchand¹

1. ISVV-Univ. Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, Bordeaux France
2. Château Montrose, Saint-Estèphe France
3. Laboratoire Boissenot, Lamarque, France

Contact the author*

Keywords

Press-wine, Phenolic composition, Aromatic composition, Sensorial categorization

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.