terclim by ICS banner
IVES 9 IVES Conference Series 9 LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

Abstract

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

Measurements and dosages were done in 50 press wines and their associated free-run wines. Wines are monovarietal batch from: cabernet-sauvignon and merlot from Saint-Estèphe, Médoc, France. The vintage is 2021. The production of wines was done in the estate to the classical process. The grapes, picked up and harvested by hand, were destemmed, sorted using an optical sorter and crushed. During vinification, extractions were adapted to each batch by daily tastings. Maceration did not exceed 21 days. After pressing, the wines were kept in oak-barrels. Three months after pressing, all the wines were tasted and were categorized according to their aptitude to be incorporated in the blend of the premium wine. Samples were kept at 12°C in bottles.
For the study of the aromatic composition: dimethyl sulphide (DMS) and its precursors (HS-SPME-GC-MS); higher alcohols (GC-FID) and 33 esters (HS-SPME-GC-MS) were measured. Concerning the analysis of phenolic compounds: anthocyanin monomers (HPLC-UV) and flavonols (HPLC-fluo.) were determined. Indices such as IPT, CieLAB, pH, AT have also been measured.
As expected, the results showed a significant difference between the two grape varieties. For each grape variety, PCA suggest differences between the press wines and the drop wines for all compounds. For the aromatic compounds, total tannins and flavonols: the press wines are more concentrated than the free-run wines. There are no significant differences between the press and free-run wines concerning anthocyanins. More statistical analysis permits to highlight unexpected separation of compounds according to the pressing step. The data also highlight links between the composition and the sensorial categorization.
In conclusion, the study permits to propose a first molecular database and to explore the origins of the sensorial categorization of that wines.
The experiment is renewed during the 2022 harvest and new compounds are added to the database.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Margot Larose1,2; Michael Jourdes¹; Eric Boissenot³, Vincent Decup²; Stéphanie Marchand¹

1. ISVV-Univ. Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, Bordeaux France
2. Château Montrose, Saint-Estèphe France
3. Laboratoire Boissenot, Lamarque, France

Contact the author*

Keywords

Press-wine, Phenolic composition, Aromatic composition, Sensorial categorization

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].