terclim by ICS banner
IVES 9 IVES Conference Series 9 ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Abstract

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.The maturation of wine in vats with the addition of alternative oak products has become increasingly popular in all wine producing countries of the world. The main reasons for the development of such products are the optimisation of their production, the reduction of the cost of wine ageing as well as the increase of the level of hygiene in the production. This study is part of this context and focuses on oak chips: an alternative wood product to barrels. It aims to evaluate the optimum dose and the best level of toasting of the oak wood for the addition of these chips during alcoholic fermentation in a white Aligoté wine. During our experiment, the white Aligoté must before alcoholic fermentation was added with different doses of chips (1-2-3-4-5 g/L) at different toasting levels (5 levels: fresh, light toasting, medium toasting, medium + toasting, strong toasting). A control wine could was also made without the addition of chips for comparison. In order to determine the optimal dose and toasting of the oak chips used, the classic oenological parameters (Foss: pH, Alcoholic Strength, Total Acidity, Volatile Acidity, Sugars), colour (A420nm and CIELAB parameters), total phenolic compounds (TPI, total tannins and Folin index), monomeric and dimeric proanthocyanidin, phenolic acid and ellagitannin composition (HPLC-UV/MS), as well as fruity and woody aroma markers (GC/MS) were analysed. Sensory analyses were also carried out for each wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Viktoriya Aleksovych1,3, Anne-Laure Gancel1,2, Oksana Tkachenko3, Pierre-Louis Teissedre1,2(*)

1. UMR Œnologie EA 4577, Université de Bordeaux, ISVV, F-33140 Villenave d’Ornon, France
2. USC 1366 INRAE, IPB, INRAE, ISVV, F-33140 Villenave d’Ornon, France
3. Faculty of wine and tourism business, ONUT, 112, Kanatna, Str. 65039, Odesa, Ukraine
4. M.V. Lomonosov Educational–Scientific Technological Institute of Food Industry, ONUT, 112, Kanatna, Str. 65039, Odesa, Ukraine

Contact the author*

Keywords

Aligoté white wine, oak chips, phenolic compounds, aroma markers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.