terclim by ICS banner
IVES 9 IVES Conference Series 9 ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Abstract

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.The maturation of wine in vats with the addition of alternative oak products has become increasingly popular in all wine producing countries of the world. The main reasons for the development of such products are the optimisation of their production, the reduction of the cost of wine ageing as well as the increase of the level of hygiene in the production. This study is part of this context and focuses on oak chips: an alternative wood product to barrels. It aims to evaluate the optimum dose and the best level of toasting of the oak wood for the addition of these chips during alcoholic fermentation in a white Aligoté wine. During our experiment, the white Aligoté must before alcoholic fermentation was added with different doses of chips (1-2-3-4-5 g/L) at different toasting levels (5 levels: fresh, light toasting, medium toasting, medium + toasting, strong toasting). A control wine could was also made without the addition of chips for comparison. In order to determine the optimal dose and toasting of the oak chips used, the classic oenological parameters (Foss: pH, Alcoholic Strength, Total Acidity, Volatile Acidity, Sugars), colour (A420nm and CIELAB parameters), total phenolic compounds (TPI, total tannins and Folin index), monomeric and dimeric proanthocyanidin, phenolic acid and ellagitannin composition (HPLC-UV/MS), as well as fruity and woody aroma markers (GC/MS) were analysed. Sensory analyses were also carried out for each wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Viktoriya Aleksovych1,3, Anne-Laure Gancel1,2, Oksana Tkachenko3, Pierre-Louis Teissedre1,2(*)

1. UMR Œnologie EA 4577, Université de Bordeaux, ISVV, F-33140 Villenave d’Ornon, France
2. USC 1366 INRAE, IPB, INRAE, ISVV, F-33140 Villenave d’Ornon, France
3. Faculty of wine and tourism business, ONUT, 112, Kanatna, Str. 65039, Odesa, Ukraine
4. M.V. Lomonosov Educational–Scientific Technological Institute of Food Industry, ONUT, 112, Kanatna, Str. 65039, Odesa, Ukraine

Contact the author*

Keywords

Aligoté white wine, oak chips, phenolic compounds, aroma markers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.