terclim by ICS banner
IVES 9 IVES Conference Series 9 USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Abstract

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA. However, in order to categorize a large number of wines, the CATA method seems to be the most appropriate, especially when working with wine professionals. CATA was used in order to define the distinct profile of 143 red Bordeaux wines sold at less than 8€ and to select the wines that best represent each profile. The wines were evaluated by 62 descriptors divided into 12 groups comprising 6 visual, 33 aroma, 5 flavors, 3 taste, and 15 mouthfeel attributes, as well as overall quality perception by 48 wine experts. The results were analyzed by Correspondence Analysis (CA) followed by Hierarchical Cluster Analysis (HCA) leading to the categorization of the wines into twelve groups. One to three representative wines of each group were selected to reach 20 wines in total. In order to validate the approach, trained panelists then analyzed the selected wines with a conventional descriptive analysis and these results were compared to those obtained with CATA questions by Multiple Factor Analysis (MFA). Both methods highlighted the same main sensory characteristics as well as a similar overall quality score. Color, woody character, vegetal notes, sweetness and pleasant mouthfeel were evaluated similarly for both panels. In contrast, fruity note evaluation seems to be more complicated and highlighted limitations for the two sensory analysis approaches. Nevertheless, CATA appears as a fast and reproducible technique for categorizing a large number of wines in order to select a representative sample of the products to be studied.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

P. Redon1,2, L. Riquier1,2, J-C. Barbe1,2, M. Jourdes1,2, A. Marchal1,2, S. Marchand1,2, A. Pons1,2,3, G. de Revel1,2, W. Albertin1,2, V. La-vigne1,2,3, C. Thibon1,2, G. Lytra1,2, K. Chira1,2, P-L. Teissedre1,2, P. Darriet1,2, S. Tempère1,2
1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France

Contact the author*

Keywords

Check-All-That-Apply, Hierarchical Cluster Analysis (HCA), multiple factor analysis (MFA), sensory characterization

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.