terclim by ICS banner
IVES 9 IVES Conference Series 9 USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Abstract

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA. However, in order to categorize a large number of wines, the CATA method seems to be the most appropriate, especially when working with wine professionals. CATA was used in order to define the distinct profile of 143 red Bordeaux wines sold at less than 8€ and to select the wines that best represent each profile. The wines were evaluated by 62 descriptors divided into 12 groups comprising 6 visual, 33 aroma, 5 flavors, 3 taste, and 15 mouthfeel attributes, as well as overall quality perception by 48 wine experts. The results were analyzed by Correspondence Analysis (CA) followed by Hierarchical Cluster Analysis (HCA) leading to the categorization of the wines into twelve groups. One to three representative wines of each group were selected to reach 20 wines in total. In order to validate the approach, trained panelists then analyzed the selected wines with a conventional descriptive analysis and these results were compared to those obtained with CATA questions by Multiple Factor Analysis (MFA). Both methods highlighted the same main sensory characteristics as well as a similar overall quality score. Color, woody character, vegetal notes, sweetness and pleasant mouthfeel were evaluated similarly for both panels. In contrast, fruity note evaluation seems to be more complicated and highlighted limitations for the two sensory analysis approaches. Nevertheless, CATA appears as a fast and reproducible technique for categorizing a large number of wines in order to select a representative sample of the products to be studied.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

P. Redon1,2, L. Riquier1,2, J-C. Barbe1,2, M. Jourdes1,2, A. Marchal1,2, S. Marchand1,2, A. Pons1,2,3, G. de Revel1,2, W. Albertin1,2, V. La-vigne1,2,3, C. Thibon1,2, G. Lytra1,2, K. Chira1,2, P-L. Teissedre1,2, P. Darriet1,2, S. Tempère1,2
1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France

Contact the author*

Keywords

Check-All-That-Apply, Hierarchical Cluster Analysis (HCA), multiple factor analysis (MFA), sensory characterization

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.