terclim by ICS banner
IVES 9 IVES Conference Series 9 CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Abstract

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Eight commercial wines were sourced from regions across the United States, including five non-vinifera monovarietal wines (Corot noir, Maréchal Foch, Marquette, Norton, and St. Croix) and three Pinot noirs from France, Oregon, and New York. The selection of Pinot noir from three representative regions was to create a context of a Vitis vinifera cultivar with a unique anthocyanin profile. The eight wines were used in a consumer perception sensory analysis, where red wine consumers reported hedonic liking for a selection of color parameters as well as ‘expected liking’ prior to tasting the wine and ‘actual liking’ following in-mouth evaluation. Chemical analyses of these eight wines and eleven other non-vinifera wines included UV-Vis spectrophotometry, CIEL*a*b* colorimetry, and anthocyanin analysis via high-pressure liquid chromatography (HPLC) and mass spectrometry (MS).

For all color parameters, the wines ranked highest for liking included Maréchal Foch, St. Croix, and the Pinot noirs from France and Oregon. Wines with higher L* values (lighter color) and higher b* values (more brown hues), including Corot noir, Norton, and Pinot noir from New York, were less liked than darker wines with less brown hues. Notably, panelists reported that quality expectations formed from visual inspection did not match their actual liking of the wine.

Interestingly, this work suggests that color is only a weak predictor for actual liking of a wine. Furthermore, it is possible that the potential diversity of color from interspecific hybrid wines falls within the range of colors of the different cultivars and styles of wine produced around the world, allowing further research to move away from the goal of “vinifera-like” color in optimizing interspecific red wine production.

 

1. Charters, S., Pettigrew, S., Food Quality and Preference, 7, 997-1007, 2007
2. Manns, D.C., Lenerz, C. T. M. C., Mansfield A.K., Journal of Food Science, 5, C696-C702, 2013
3. Balik, J., Kumsta M., and Rop O., Chemical Papers, 10, 1285-1292, 2013

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Catherine H. Dadmun1,2, Anna Katharine Mansfield¹

1. Cornell University, Food Science & Technology
2. Université de Bourgogne Franche-Comté, UMR PAM, Équipe PCAV

Contact the author*

Keywords

interspecific hybrid wines, color, consumer perception, anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.