terclim by ICS banner
IVES 9 IVES Conference Series 9 CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Abstract

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Eight commercial wines were sourced from regions across the United States, including five non-vinifera monovarietal wines (Corot noir, Maréchal Foch, Marquette, Norton, and St. Croix) and three Pinot noirs from France, Oregon, and New York. The selection of Pinot noir from three representative regions was to create a context of a Vitis vinifera cultivar with a unique anthocyanin profile. The eight wines were used in a consumer perception sensory analysis, where red wine consumers reported hedonic liking for a selection of color parameters as well as ‘expected liking’ prior to tasting the wine and ‘actual liking’ following in-mouth evaluation. Chemical analyses of these eight wines and eleven other non-vinifera wines included UV-Vis spectrophotometry, CIEL*a*b* colorimetry, and anthocyanin analysis via high-pressure liquid chromatography (HPLC) and mass spectrometry (MS).

For all color parameters, the wines ranked highest for liking included Maréchal Foch, St. Croix, and the Pinot noirs from France and Oregon. Wines with higher L* values (lighter color) and higher b* values (more brown hues), including Corot noir, Norton, and Pinot noir from New York, were less liked than darker wines with less brown hues. Notably, panelists reported that quality expectations formed from visual inspection did not match their actual liking of the wine.

Interestingly, this work suggests that color is only a weak predictor for actual liking of a wine. Furthermore, it is possible that the potential diversity of color from interspecific hybrid wines falls within the range of colors of the different cultivars and styles of wine produced around the world, allowing further research to move away from the goal of “vinifera-like” color in optimizing interspecific red wine production.

 

1. Charters, S., Pettigrew, S., Food Quality and Preference, 7, 997-1007, 2007
2. Manns, D.C., Lenerz, C. T. M. C., Mansfield A.K., Journal of Food Science, 5, C696-C702, 2013
3. Balik, J., Kumsta M., and Rop O., Chemical Papers, 10, 1285-1292, 2013

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Catherine H. Dadmun1,2, Anna Katharine Mansfield¹

1. Cornell University, Food Science & Technology
2. Université de Bourgogne Franche-Comté, UMR PAM, Équipe PCAV

Contact the author*

Keywords

interspecific hybrid wines, color, consumer perception, anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.