terclim by ICS banner
IVES 9 IVES Conference Series 9 CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Abstract

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Eight commercial wines were sourced from regions across the United States, including five non-vinifera monovarietal wines (Corot noir, Maréchal Foch, Marquette, Norton, and St. Croix) and three Pinot noirs from France, Oregon, and New York. The selection of Pinot noir from three representative regions was to create a context of a Vitis vinifera cultivar with a unique anthocyanin profile. The eight wines were used in a consumer perception sensory analysis, where red wine consumers reported hedonic liking for a selection of color parameters as well as ‘expected liking’ prior to tasting the wine and ‘actual liking’ following in-mouth evaluation. Chemical analyses of these eight wines and eleven other non-vinifera wines included UV-Vis spectrophotometry, CIEL*a*b* colorimetry, and anthocyanin analysis via high-pressure liquid chromatography (HPLC) and mass spectrometry (MS).

For all color parameters, the wines ranked highest for liking included Maréchal Foch, St. Croix, and the Pinot noirs from France and Oregon. Wines with higher L* values (lighter color) and higher b* values (more brown hues), including Corot noir, Norton, and Pinot noir from New York, were less liked than darker wines with less brown hues. Notably, panelists reported that quality expectations formed from visual inspection did not match their actual liking of the wine.

Interestingly, this work suggests that color is only a weak predictor for actual liking of a wine. Furthermore, it is possible that the potential diversity of color from interspecific hybrid wines falls within the range of colors of the different cultivars and styles of wine produced around the world, allowing further research to move away from the goal of “vinifera-like” color in optimizing interspecific red wine production.

 

1. Charters, S., Pettigrew, S., Food Quality and Preference, 7, 997-1007, 2007
2. Manns, D.C., Lenerz, C. T. M. C., Mansfield A.K., Journal of Food Science, 5, C696-C702, 2013
3. Balik, J., Kumsta M., and Rop O., Chemical Papers, 10, 1285-1292, 2013

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Catherine H. Dadmun1,2, Anna Katharine Mansfield¹

1. Cornell University, Food Science & Technology
2. Université de Bourgogne Franche-Comté, UMR PAM, Équipe PCAV

Contact the author*

Keywords

interspecific hybrid wines, color, consumer perception, anthocyanin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.