terclim by ICS banner
IVES 9 IVES Conference Series 9 GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Abstract

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits. Thus, this work intends to characterize the aroma profile of several samples (23) of grape spirits for Port wine production. That characterization was done by using aroma descriptive analysis with a sensory panel and by using olfactometry (GC-O) in order to screen, with a sniffers panel, the most potent odorant compounds across the several volatile compounds of the samples. It was also determined the sensory thresholds of some of the identified compounds in order to determine the odorant activity value of each compound.

The aroma profile results revealed different grape spirits aroma profiles. The PCA applied to the average results (from a sensory panel) of aroma attributes intensities allows the separation of the samples across the two principal components, which explain more than 50% of the variability. The overall quality appears to be linked to the positive side of component 1 more associated with the fruity, floral and sweet odor notes. The samples with low quality are placed in the opposite side of this component, and linked to higher intensity of odour notes such as tails, herbaceous and oily.

The chromatographic analysis (GC-O and GC-MS) of several grape spirit samples pointed out as potent odorants several compounds that belong to different chemical families, namely esters, alcohols, terpenic compounds, acids and ketones. Based on the sensory thresholds, determined by the sensory panel in hydroalcoholic solutions (20% v/v), the odorant activity values were calculated for the different odorant compounds. The obtained results showed, that the compounds, which presented the higher odorant activity values were esters and terpenic group compounds.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ilda Caldeira1,2, Sílvia Lourenço¹, Isabel Furtado³, Ricardo Silva³, Frank S. S. Rogerson³

1. Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, Quinta de Almoinha, 2565-191 Dois Portos, PORTUGAL
2. MED—Mediterranean Institute for Agriculture, Environment and Development Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, PORTUGAL
3. Symington Family Estates, Vinhos S.A. Travessa Barão de Forrester, 86, 4400-034 Vila Nova de Gaia, PORTUGAL

Contact the author*

Keywords

Grape spirits, Port wine, odorant compounds, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.