GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Modeling from functioning of a grape berry to the whole plant

Modeling from functioning of a grape berry to the whole plant

Abstract

Context and purpose of the study – Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds. It is known that the composition and concentration of chemical compounds dynamically change along berry development and can be affected by genotypes (rootstock and scion), environment (light, temperature and water) and nutrient status (carbon and nitrogen). Moreover, the ongoing climate change is affecting the physiology of grapevine and ultimately wine quality and typicity. Therefore, a better understanding of the mechanisms controlling the accumulation of quality‐related metabolites (both primary and secondary) in grape berry is essential to choose grapevine cultivars and viticultural practices best adapted to a given growth region. Process‐based models can mechanistically integrate various processes involved in fruit growth and composition, and simulate the plant responses to weather and management practices, making them a promising tool to study the response of berry quality to those factors.

Material and methods – Three types of modeling approaches have been applied, including constraint‐ based flux balance analysis, process‐based models, and 3D structure‐functional models. These models were established, calibrated and validated based extensive experimental measurements in grapevines growing under contrast conditions, e.g. nitrogen limitation, modulation of leaf‐to‐fruit ratios, and light conditions. Fruit growth was measured in parallel with metabolite composition, enzyme activities, and whole plant growth processes, such as canopy photosynthesis, and transpiration. Moreover, in silico analysis was conducted to create virtual genotypes or to assess regulatory roles of model parameters.

Results– At cellular scale, we used constraint‐based flux balance analysis model to investigate the flux modifications responsible for biosynthesis of anthocyanins in response to nitrogen limitation. At organ scale, we developed process‐based models for sugar accumulation and anthocyanin composition in grape berries, which allowed us to determine the key processes responsible for these two important quality components. At the whole‐plant scale, a 3D structure‐functional model was developed to simulate water transport, leaf gas exchanges, carbon allocation, and berry growth in various genotype x environment scenarios. In the future, the interactions among the different scales of regulation will be further modelled to offer a model toolkit that allows more accurate predictions of grapevine growth and berry quality elaboration under changing environments and paving a way towards model‐assisted breeding. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Zhanwu DAI (1), Jinliang CHEN (1), Junqi ZHU (2), Michel GENARD (3), Bertrand BEAUVOIT (4), Stefano PONI (5), Sophie COLOMBIE (4), Gregory GAMBETTA (1), Philippe VIVIN (1), Nathalie OLLAT (1), Serge DELROT (1), Yves GIBON (4), Eric GOMES (1)

(1) EGFV, Bordeaux Sci Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, France.
(2) The New Zealand Institute for Plant & Food Research Limited (PFR) Marlborough, Blenheim 7240, New Zealand.
(3) INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, Avignon, France.
(4) INRA, UMR 1332 Biologie du Fruit et Pathologie, F33883 Villenave d’Ornon, France.
(5) Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.

Contact the author

Keywords

Environmental adaptation, Vitis vinifera, berry quality, modeling

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.