GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Abstract

Context and purpose of the study: The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color. The mechanical resistance of grapes influences the integrity and sanitary quality of the harvest. In this study, the mechanical characteristics of grapes berries are studied at harvesting time in order to determine their properties of firmness and the resistance of the berry skin during the alcoholic fermentation. Special indices are defined measuring the energy needed to crush 50% of the initial diameter of the berry. We applied these indices to different varieties and get different results either for the entire berry firmness or for the skin resistance.

Material and methods : To evaluate the firmness of grapes, INRA has developed a tool specifically adapted to measure the skin resistance of the grapes (Penelaup Robot, patented). We used here two grape varieties: Grenache Noir and Carignan Noir.Firmness of the entire berries were measured at harvesting. Right after, the fermentations were conducted at 21°C, in low volume tanks (<1kg) using “French Press” coffee plunger with similar and standard conditions. 1 kg of berries were crushed and poured in the tank. Lalvin ICV OKAY yeast (20 g/hL) and SO2 (250 µL of a 8% solution) were added simultaneously. Cap management was carried out every day during alcoholic fermentation (AF) by submerging pomace with the plunger. The decrease of sugar concentration was monitored by measuring the Brix degree and the density. Fermentations were considered done when the density remained stable (7 to 8 days) with density less than 995. At the end of AF the classical wine chemical parameters were determined. Skin resistance measurements were carried out at the beginning and at the end of AF plus several points in between.

Results: We defined mechanical indices dedicated to the firmness of grapes. Using these indices, the result of this study shows differences in firmness related to the grape varieties: Grenache Noir and Carignan Noir have different mechanical properties. Similarly, during the alcoholic fermentation, the resistance of the skins highlights different properties of the berries immersed in the fermenting must. This had never measured until now. These results give new information on the mechanical properties of the grapes. It would help the winemaker to better choose the type of fermentation and maceration adapted to his grapes depending on the type of wine he wants to produce.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Abbal, PHILIPPE (1), Céline PONCET LEGRAND (1), Stephanie CARILLO (1), Magali BES (3), Marie Agnès DUCASSE (4) , Elissa ABI‐HABIB (2), Aude VERHNET (2)

(1) INRA, UMR SPO 2, Place viala, 34060 Montpellier Cedex
(2) SupAgro, 2, Place viala, 34060 Montpellier Cedex
(3) INRA, UMT Minicave, UE Pech Rouge, 11430 Gruissan
(4) IFV, UMT Minicave, Domaine de Pech Rouge, 11430 Gruissan

Contact the author

Keywords

grapes, firmness, rheology, berry skin, fermentation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Precision viticultural strategy for managing intra-vineyard variability in grape aroma using UAV-based vigour indices

In several cultivars, such as Gewürztraminer and Riesling, grape and wine aromas are determined by volatile terpenoids.