GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

Abstract

Context and purpose of the study: The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color. The mechanical resistance of grapes influences the integrity and sanitary quality of the harvest. In this study, the mechanical characteristics of grapes berries are studied at harvesting time in order to determine their properties of firmness and the resistance of the berry skin during the alcoholic fermentation. Special indices are defined measuring the energy needed to crush 50% of the initial diameter of the berry. We applied these indices to different varieties and get different results either for the entire berry firmness or for the skin resistance.

Material and methods : To evaluate the firmness of grapes, INRA has developed a tool specifically adapted to measure the skin resistance of the grapes (Penelaup Robot, patented). We used here two grape varieties: Grenache Noir and Carignan Noir.Firmness of the entire berries were measured at harvesting. Right after, the fermentations were conducted at 21°C, in low volume tanks (<1kg) using “French Press” coffee plunger with similar and standard conditions. 1 kg of berries were crushed and poured in the tank. Lalvin ICV OKAY yeast (20 g/hL) and SO2 (250 µL of a 8% solution) were added simultaneously. Cap management was carried out every day during alcoholic fermentation (AF) by submerging pomace with the plunger. The decrease of sugar concentration was monitored by measuring the Brix degree and the density. Fermentations were considered done when the density remained stable (7 to 8 days) with density less than 995. At the end of AF the classical wine chemical parameters were determined. Skin resistance measurements were carried out at the beginning and at the end of AF plus several points in between.

Results: We defined mechanical indices dedicated to the firmness of grapes. Using these indices, the result of this study shows differences in firmness related to the grape varieties: Grenache Noir and Carignan Noir have different mechanical properties. Similarly, during the alcoholic fermentation, the resistance of the skins highlights different properties of the berries immersed in the fermenting must. This had never measured until now. These results give new information on the mechanical properties of the grapes. It would help the winemaker to better choose the type of fermentation and maceration adapted to his grapes depending on the type of wine he wants to produce.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Abbal, PHILIPPE (1), Céline PONCET LEGRAND (1), Stephanie CARILLO (1), Magali BES (3), Marie Agnès DUCASSE (4) , Elissa ABI‐HABIB (2), Aude VERHNET (2)

(1) INRA, UMR SPO 2, Place viala, 34060 Montpellier Cedex
(2) SupAgro, 2, Place viala, 34060 Montpellier Cedex
(3) INRA, UMT Minicave, UE Pech Rouge, 11430 Gruissan
(4) IFV, UMT Minicave, Domaine de Pech Rouge, 11430 Gruissan

Contact the author

Keywords

grapes, firmness, rheology, berry skin, fermentation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydospora, Phaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.