GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Abstract

Context and purpose of the study – Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Material and methods – Samples were collected during two consecutive years (2011. and 2012.) from germplasm collection in Split (Dalmatia). Grape samples were constituted of five bunches of fully ripe grapes. Seeds were manually separated, freeze-dried, grounded and stored at a low temperature until analyses. Polyphenolic compounds were analysed using HPLC analysis.

Results – Eight polyphenolic compounds, galic acid, monomeric flavan-3-ols (catechin, epicatechin, gallocatechin and epicatechin 3-O-gallate) and procyanidin dimers (B1, B2 and B4) were detected. According to the investigated polyphenolic compounds significant differences between investigated varieties were found. Gallic acid content ranged from 91.0 to 245.08 total monomeric flavan-3-ols from 619.2 to 13539.6 mg kg-1 and total procyanidin dimers from 975.3 to 4140.2 mg kg-1 of seed. Catechin (263.2 to 8124.2 mg kg-1 seed) was found as main monomeric flavan-3-ol, epicatechin 3-O-gallate, gallocatchin and epicatechin varied between 0-164.31, 37.19-155.07 and 277.5-5224.4 mg kg-1 seed, respectively. Procyanidin B2 (420.2 to 2207.8 mg kg-1 seed) was found as a main procyanidin dimer. Procyanidin B1 and B4 amount varied between 401.80-165.19 and 276,7-1539.4 mg kg-1 seed, respectively. Gegić had lowest and varieties Plavac mali and Babić highest amount of all investigated polyphenolic compounds. This study presents the first evaluation of Croatian grapevine varieties by characterization of seed polyphenolic compounds and it shows huge variability among them. More detailed analysis of polyphenolic compounds in selected varieties are carry out in our further research activities.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Željko ANDABAKA1, Edi MALETIĆ1,2, Domagoj STUPIĆ1, Darko PREINER1,2, Jasminka KAROGLAN KONTIĆ1,2, Ivana TOMAZ1, Iva ŠIKUTEN1, Petra ŠTAMBUK2, Zvjezdana MARKOVIĆ1*

1 University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10 000 Zagreb, Croatia
2 Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, HR-10000 Zagreb

Contact the author

Keywords

Grapevine, Autochthonous, Polyphenols, Seed, Croatia

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Training system and its influence on iso-anisohydric behavior of cv. Syrah

Water use efficiency is one of the most valued objectives in vine growing in mediterranean climates (de la fuente et al., 2015). Due to this, the grape growers provide different adaptation strategies according to their efficient consumption against the presumable water deficit generated under these environmental conditions. The use of non-positioned shoot systems (like sprawl, bush, etc.) Can help to achieve this objective.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.