GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Abstract

Context and Purpose of the Study- Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

Material and Method – Ecophysical variation affecting wine flavonoid composition in a Cabernet Sauvignon/110R vineyard was modeled for 2016 and 2017. Soil properties of the vineyard were proximally sensed to acquire soil texture. An equi-distant 30 m × 30 m grid was overlaid to characterize grapevine primary and secondary metabolism. The mid-day stem water potential (􀀁stem) integrals were calculated and delineated by k-means clustering into two water status zones in 2016: severely stressed (Zone 1) and moderately stressed (Zone 2). Primary metabolism, including total soluble solids, titratable acidity, pH, and berry weights; also, secondary metabolism, including anthocyanins and flavonols were measured throughout the whole season. The primary metabolism decoupled when Zone 2 reached 26 and 24 °Brix in 2016 and 2017, respectively with significantly higher °Brix values of 30 and 27 in Zone 1. Based on this decoupling in °Brix between two water stress zones, fruits were harvested differentially and vinified separately from two zones in both years.

Results – The research site received 39 mm of precipitation in 2016 and 162 mm in 2017. The surface soil texture could explain 84.20% of the variations in 􀀁stem while subsurface soil texture could explain 79.57%, depending on the loam to sandy loam contribution. In 2016, total anthocyanidins were higher in Zone 2. Di- and tri-hydroxylated anthocyanidins were more than 2× concentrated in Zone 2. Myricetin-, quercetin-, kaempferol-3-O-glucosides and total flavonols were higher in Zone 2. Proanthocyanidin subunits were also higher in Zone 2 in 2016. However, there was no difference in any flavonoid compound in 2017 except kaempferol-3-O-glucoside which was lower in Zone 2. The results indicated that in 2016, the water stress between the two zones was great enough to alter flavonoid concentration in base wine. However, in 2017, harvestcommenced earlier when two zones started separating in °Brix, and wine flavonoid concentration coalesced accordingly. This study provides fundamental knowledge to coalesce vineyard variability through linking soil texture to plant water status by using precision viticulture tools, further, their influences on flavonoid profiles in the final wine products.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, Luis SANCHEZ3, S. Kaan KURTURAL1*

1 Department of Viticulture and Enology, Oakville Experiment Station, University of California, Oakville, CA, USA
2 Department of Viticulture and Enology, California State University, Fresno, CA, USA
3 E & J Gallo Winery, 700 Yosemite Blvd, Modesto, CA, USA

Contact the author

Keywords

Grapevine, anthocyanins, flavonoids, water status, soil texture, spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.