GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Abstract

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA). Anthocyanins and trans-resveratrol contents were assessed using an HPLC. Between October and February mean maximum temperatures in SR were 10 % higher than in VU, however, there were no differences in mean minimum temperatures. In the hotter region (SR), in all varieties there was about a 100% increase of total anthocyanins by ABA treatment. In the coldest region (VU), ABA treatment increased total anthocyanins in B, CS, M and S at around 40 %. However, MeJA did not affect the total anthocyanins content. Trans-resveratrol content was significantly increased in M, PN and S by ABA and only in PN by MeJA in SR. Also, in VU was significantly increased in M and S by ABA, while it was increased in B, CS and S with MeJA. ABA showed a temperature mitigation effect in the hotter region on anthocyanins content, additionally showing a previously non-described effect increasing trans-resveratrol content. MeJA had a better performance on trans-resveratrol content in VU but not in all varieties. Future studies include winemaking to test their beneficial health properties in models of study on rats, a psychotropic level.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Emiliano MALOVINI 1, 2*, Martín DURÁN 1, Celeste ARANCIBIA 1, 2, M. Inés DE ROSAS 1, Leonor DEIS 1, David Gustavo COBOS 1, 3, Raquel GARGANTINI 3, Humberto MANZANO 3, Liliana MARTÍNEZ 1, 2, Bruno CAVAGNARO 1, 2

1 Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, UNCUYO, Almirante Brown 500, Chacras de Coria, Mendoza, Argentina
2 Instituto de Biología Agrícola IBAM UNCUYO-CONICET, Mendoza, Argentina, Almirante  Brown 500, Chacras de Coria, Mendoza, Argentina
3 Instituto de Vitivinicultura, Mendoza, Argentina, Av. San Martín 430, Mendoza, Argentina

Contact the author

Keywords

Abscicic acid, methyl jasmonate, anthocyanins, trans-resveratrol

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.