GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Abstract

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA). Anthocyanins and trans-resveratrol contents were assessed using an HPLC. Between October and February mean maximum temperatures in SR were 10 % higher than in VU, however, there were no differences in mean minimum temperatures. In the hotter region (SR), in all varieties there was about a 100% increase of total anthocyanins by ABA treatment. In the coldest region (VU), ABA treatment increased total anthocyanins in B, CS, M and S at around 40 %. However, MeJA did not affect the total anthocyanins content. Trans-resveratrol content was significantly increased in M, PN and S by ABA and only in PN by MeJA in SR. Also, in VU was significantly increased in M and S by ABA, while it was increased in B, CS and S with MeJA. ABA showed a temperature mitigation effect in the hotter region on anthocyanins content, additionally showing a previously non-described effect increasing trans-resveratrol content. MeJA had a better performance on trans-resveratrol content in VU but not in all varieties. Future studies include winemaking to test their beneficial health properties in models of study on rats, a psychotropic level.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Emiliano MALOVINI 1, 2*, Martín DURÁN 1, Celeste ARANCIBIA 1, 2, M. Inés DE ROSAS 1, Leonor DEIS 1, David Gustavo COBOS 1, 3, Raquel GARGANTINI 3, Humberto MANZANO 3, Liliana MARTÍNEZ 1, 2, Bruno CAVAGNARO 1, 2

1 Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, UNCUYO, Almirante Brown 500, Chacras de Coria, Mendoza, Argentina
2 Instituto de Biología Agrícola IBAM UNCUYO-CONICET, Mendoza, Argentina, Almirante  Brown 500, Chacras de Coria, Mendoza, Argentina
3 Instituto de Vitivinicultura, Mendoza, Argentina, Av. San Martín 430, Mendoza, Argentina

Contact the author

Keywords

Abscicic acid, methyl jasmonate, anthocyanins, trans-resveratrol

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil electrical resistivity, a new and revealing technique for precision viticulture

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv.

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.