GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Hydraulic redistribution and water movement mechanisms in grapevines

Hydraulic redistribution and water movement mechanisms in grapevines

Abstract

Context and purpose of the study – Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution. The objectives of the present study were: (1) to determine the pathways of water transport through the vine form wet soil areas to the dry areas; (2) to determine the potential phloem contribution to this water movement.

Material and methods – This study used deuterium-labeled water (2H2O) as a tracer of water movement. Own-rooted Vitis vinifera L. cv. Merlot grapevines were grown in three-way split root pots. One of the three compartments was irrigated with 2H2O and the other two were left to dry. The trunk in one of the dry compartments was girdled and the other one was left intact to distinguish xylem and phloem water movement. Xylem sap and phloem sap, trunk and root tissue, and soil samples were collected. Water from each sample was extracted via a cryogenic method and analyzed for deuterium enrichment (δ2H).

Results – Following 2H2O supply to the roots, strong deuterium enrichment was found in both xylem and phloem sap collected from petioles. Moreover, the δ2H values were significantly higher in root tissues and soil collected from the dry/intact compartment than in samples from the dry/girdled compartment. These results indicate water moves from roots in wet soil to leaves via the xylem and recycles from leaves to roots in dry soil via the phloem. This xylem-to-phloem redistribution in drought-stressed grapevines keeps roots in dry soil alive, as long as a portion of the root system has access to soil water. The success of irrigation strategies such as partial rootzone drying may be linked to this physiological process.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Nataliya SHCHERBATYUK1, Markus KELLER1*

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, 99350, WA, USA

Contact the author

Keywords

Grapevine, Xylem, Phloe, Drought, Water Redistribution, Hydraulic Lift, Deuterium

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.