Terroir 2020 banner
IVES 9 IVES Conference Series 9 Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Abstract

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.

Conclusions: 

Climate change could threaten the existing balance between local environmental conditions and vitivinicultural production systems over the majority of wine producing areas. The subsequent decrease in the suitability of the current winemaking regions will require, apart from short-term adjustments in vineyard management, the adaptation of plant material by the use of late-ripening and drought resistant varieties and clones. Greek and Cypriot grape cultivars appear to grow well under dryland conditions, and additionally they mature their crop later than most of the well-established international varieties. However limited evidence exists regarding the direct effects of high daytime temperatures and drought especially on the quality of their grapes. This information would greatly assist grape growers in improving cultivar selection and adjusting management decisions.

Significance and Impact of the Study: Indigenous grapevine varieties of the semiarid viticultural regions of Greece and Cyprus have received much less attention compared to other grapes native to Mediterranean areas and therefore deserve to be better studied as a sustainable solution in the context of climate change. However, substituting existing varieties will change the “identity” of (mainly) European wine appellations, therefore the effectiveness of any strategy depends on both the willingness of grape growers and consumers to accept new varieties and also on the flexibility of current legislation.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Stefanos Koundouras*

School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece

Contact the author

Keywords

Plant material, grapevine, adaptation, temperature, drought

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Carbon footprint in Austrian viticulture – Evaluation of the main polluters and possible solutions in entire the production chain

The sustainability certification ‘nachhaltig austria’ (www.sustainableaustria.com) has been offered to austrian wineries in an online version for 10 years and over 25% of the austrian wine-growing area is now certified. Since the 2022 harvest, ‘nachhaltig austria’ has automatically calculated the carbon footprint for each winery, per hectare of vineyard, per litre of bulk wine and per 0.75-litre bottle (poelz, w. And rosner, f.g. 2023). In last year’s publications and numerous presentations at national and international level, topics such as refilling glass bottles, lightweight glass bottles, renewable energy, … Etc.

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world