GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

Abstract

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties. The genetic improvement, using the hybridization method, was made with traditional recognized methods. As a motherly were selected indigenous varieties and as fatherly were selected Western European varieties. The ampelographic description made in accordance with the instructions of the OIV 2013. They created the grape varieties for growing in all production areas of high quality white and red wines of different categories be used for genetic improvement of white and red vines.Τo determine the effect of different environmental conditions on growth, yield and quality of the product of each variety is necessary to do research.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

L. Papakonstantinou1, P. Zamanidis2, Ch. Paschalidis3, D. Petropoulos3, D. Taskos2, St. Sotiropoulos3,G Chamurliev4 and M. A. Ovchinnicov5

1 Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.
2 “ELGO DIMITRA”, Institute of Olive, Subtropical Plants and Division of Athens Vineyard, 1 Venizelou St., 14123 Lykovrysi, Attiki
3 Technological Educational Institute of Peloponnes School of Agricultural Techology,Antikalamos 24100 Kalamata, Greece
4 Russian University of Peoples’ Frendship, 6 Miklouho-Maclay St., Moscow Russia
5 Volgograd State Agrarian University . Volgograd Russia, 26 University Prospect

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.