terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

Abstract

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions. The measured parameters included: 1) sugars, organic acids and %ABV (measured by specific enzymatic methods or by OIV reference methods), 2) dissolved oxygen (measured according to OIV protocols), 3) semi-quantitative determination of pigments, profile of non-anthocyanidin phenols, and profile of condensed tannins (LC-QqQ/MS [1]), spectrophotometric indexes (Hue and Intensity), colorimetric indexes (CIELab parameters), and the volatile profiles (GCxGC-ToF/MS [2]). A striking relation among the abundances of four anthocyanidin monoglucosides (peonidin-3-glu, malvidin-3-glu, petunidin-3-glu, and cyanidin-3-glu) has been observed in the musts from frozen grapes, but not in wines from frozen or non-frozen grapes. Cyclic procyanidins showed neither significant differences in concentration in must and wine due to any specific applied factor, nor due to specific treatments (such as with bentonites), proving again their applicability as markers for the grape variety in wine [3]. A substantial drop in peonidin-3-glu over the vinification (the main anthocyanin in Schiava cv. grapes) was studied in relation to the applied study factors. Grape freezing increased the extraction of peonidin-3-glu in the must, though the rate of its subsequent loss was faster than in wines from non-frozen grapes. Nonethe-less, peonidin-3-glucoside was still more concentrated in the wines from frozen grapes than in wines from non-frozen grapes up to wine bottling. The wines made from frozen grapes and without malolac-tic fermentation had the highest colorimetric parameters a* (green→red), ΔE* (difference in colour), C* (chromaticity), and ΔH* (difference in tone) colorimetric parameters. b* (blue→yellow) was highest in wines from frozen grapes, but regardless of the application or not of the malolactic fermentation.

 

1. C Dupas de Matos, A., Longo, E., et al. (2020). Foods, vol. 9(4), p. 499
2. Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, vol. 26(20), p. 6245
3. Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, vol. 299, p. 125125

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edoardo Longo1,2,*,†, Aakriti Darnal1,2, Adriana Teresa Ceci1,2, Simone Poggesi1,2,3, Tanja Mimmo², Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13/B, 39100 Bolzano (Italy)
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy)
3. Food experience and sensory testing laboratory (Feast), Massey University, Private Bag 11222, Palmerston North 4410 (New Zealand)

Contact the author*

Keywords

Colour instability, Grape freezing, Chemical profile, Colorimetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.