GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Abstract

Context and purpose of the study ‐ Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible. It is therefore important to gain further knowledge on the responses of plant species of agricultural importance to realistic water shortage extents, and their consistencies. A valuable model for water stress studies has been the grapevine (Vitis vinifera L.), a species with a high variability in their stomatal sensitivity to water stress. In contrast to usual agricultural practices, grapevines for oenological purposes are grown under controlled water stress conditions.

Material and methods ‐ In the abovementioned context, we aimed to study the physiological responses to a progressive, not severe (Ѱpd > ‐1MPa), water deficit in the grapevine varieties Syrah and Carménère, in two consecutive season using different sites each year, and with different row orientation. We assessed a) the relationship between the water status of plants and the stomatal responses to water availability; b) the hydraulic traits derived from Ѱ isotherms (pressure vs volume curves); c) the impact of the water stress on the hydraulic traits derived from the pressure vs volume curves and on photosynthetic responses; d) the stomatal sensitivity to ABA (only on one of the study sites) and e) their stem hydraulic vulnerability in relation to xylem characteristics.

Results – Acording to the Ѱleaf/Ѱpd relationship (), and contrary to various previous reports, we found Syrah to be an isohydric grapevine variety, while Carménère, an emblematic variety cultivated in Chile, behaved as anisohydric. Syrah resulted to be more variable in terms of , gs50 and gs12 (the pd upon which stomata is reduced down to a 50% and 12%), 0 and tlp (the at full turgor and the  at turgor loss point), likely associated to the higher genetic variability of Syrah compared to that of Carménère. Also, Carménère, the anisohydric variety was capable of osmotic adjustment and was more sensitive to ABA at the stomatal level, two traits typical of anisohydric species, contrary to that observed in Syrah. Even though the capacity to maintain stomata open, theoretically, would imply a lower energy load into the photosynthetic systems, both varieties reduced their photosynthetic capacity up to a similar extent upon drought. Finally, Syrah, despite having wider xylem vessels than Carménère, is less vulnerable to cavitation, and had a lower hydraulic safety margin, typical of isohydric species. We will discuss our results in terms of the genetic variability of the varieties regarding the consistency of their hydraulic responses, the importance of the environment, the degree of isohydry in relation to stomatal responses to critical thresholds as well as drought resistance, and the implications for photosynthesis in the long term. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luis VILLALOBOS‐GONZÁLEZ (1), Constanza QUINTANA (1), Dayna DONAIRE (1), Mariana MUÑOZ‐ ARAYA (1), Nicolás FRANCK, Claudio PASTENES (1)

(1) Universidad de Chile, Facultad de Ciencias Agronómicas.

Contact the author

Keywords

ABA sensitivity, anisohydry, drought resistance, grapevine, stomatal conductance

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:
• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.
1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)
2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and