GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Abstract

Context and purpose of the study ‐ Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible. It is therefore important to gain further knowledge on the responses of plant species of agricultural importance to realistic water shortage extents, and their consistencies. A valuable model for water stress studies has been the grapevine (Vitis vinifera L.), a species with a high variability in their stomatal sensitivity to water stress. In contrast to usual agricultural practices, grapevines for oenological purposes are grown under controlled water stress conditions.

Material and methods ‐ In the abovementioned context, we aimed to study the physiological responses to a progressive, not severe (Ѱpd > ‐1MPa), water deficit in the grapevine varieties Syrah and Carménère, in two consecutive season using different sites each year, and with different row orientation. We assessed a) the relationship between the water status of plants and the stomatal responses to water availability; b) the hydraulic traits derived from Ѱ isotherms (pressure vs volume curves); c) the impact of the water stress on the hydraulic traits derived from the pressure vs volume curves and on photosynthetic responses; d) the stomatal sensitivity to ABA (only on one of the study sites) and e) their stem hydraulic vulnerability in relation to xylem characteristics.

Results – Acording to the Ѱleaf/Ѱpd relationship (), and contrary to various previous reports, we found Syrah to be an isohydric grapevine variety, while Carménère, an emblematic variety cultivated in Chile, behaved as anisohydric. Syrah resulted to be more variable in terms of , gs50 and gs12 (the pd upon which stomata is reduced down to a 50% and 12%), 0 and tlp (the at full turgor and the  at turgor loss point), likely associated to the higher genetic variability of Syrah compared to that of Carménère. Also, Carménère, the anisohydric variety was capable of osmotic adjustment and was more sensitive to ABA at the stomatal level, two traits typical of anisohydric species, contrary to that observed in Syrah. Even though the capacity to maintain stomata open, theoretically, would imply a lower energy load into the photosynthetic systems, both varieties reduced their photosynthetic capacity up to a similar extent upon drought. Finally, Syrah, despite having wider xylem vessels than Carménère, is less vulnerable to cavitation, and had a lower hydraulic safety margin, typical of isohydric species. We will discuss our results in terms of the genetic variability of the varieties regarding the consistency of their hydraulic responses, the importance of the environment, the degree of isohydry in relation to stomatal responses to critical thresholds as well as drought resistance, and the implications for photosynthesis in the long term. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luis VILLALOBOS‐GONZÁLEZ (1), Constanza QUINTANA (1), Dayna DONAIRE (1), Mariana MUÑOZ‐ ARAYA (1), Nicolás FRANCK, Claudio PASTENES (1)

(1) Universidad de Chile, Facultad de Ciencias Agronómicas.

Contact the author

Keywords

ABA sensitivity, anisohydry, drought resistance, grapevine, stomatal conductance

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Terroir et marché des A.O.C

Cette communication sera basée sur les résultats d’une étude auprès des consommateurs réalisée par la société G3 pour l’I.N.A.O. sur les attitudes des consommateurs vis à vis des produits de terroir et des A.O.C. et sur un mémoire de DEA soutenu par Monsieur J-C. DURIEUX à l’Université de Paris X Nanterre, consacré aux variables explicatives du comportement d’achat des vins A.O.C.

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.