GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Abstract

Context and purpose of the study ‐ Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible. It is therefore important to gain further knowledge on the responses of plant species of agricultural importance to realistic water shortage extents, and their consistencies. A valuable model for water stress studies has been the grapevine (Vitis vinifera L.), a species with a high variability in their stomatal sensitivity to water stress. In contrast to usual agricultural practices, grapevines for oenological purposes are grown under controlled water stress conditions.

Material and methods ‐ In the abovementioned context, we aimed to study the physiological responses to a progressive, not severe (Ѱpd > ‐1MPa), water deficit in the grapevine varieties Syrah and Carménère, in two consecutive season using different sites each year, and with different row orientation. We assessed a) the relationship between the water status of plants and the stomatal responses to water availability; b) the hydraulic traits derived from Ѱ isotherms (pressure vs volume curves); c) the impact of the water stress on the hydraulic traits derived from the pressure vs volume curves and on photosynthetic responses; d) the stomatal sensitivity to ABA (only on one of the study sites) and e) their stem hydraulic vulnerability in relation to xylem characteristics.

Results – Acording to the Ѱleaf/Ѱpd relationship (), and contrary to various previous reports, we found Syrah to be an isohydric grapevine variety, while Carménère, an emblematic variety cultivated in Chile, behaved as anisohydric. Syrah resulted to be more variable in terms of , gs50 and gs12 (the pd upon which stomata is reduced down to a 50% and 12%), 0 and tlp (the at full turgor and the  at turgor loss point), likely associated to the higher genetic variability of Syrah compared to that of Carménère. Also, Carménère, the anisohydric variety was capable of osmotic adjustment and was more sensitive to ABA at the stomatal level, two traits typical of anisohydric species, contrary to that observed in Syrah. Even though the capacity to maintain stomata open, theoretically, would imply a lower energy load into the photosynthetic systems, both varieties reduced their photosynthetic capacity up to a similar extent upon drought. Finally, Syrah, despite having wider xylem vessels than Carménère, is less vulnerable to cavitation, and had a lower hydraulic safety margin, typical of isohydric species. We will discuss our results in terms of the genetic variability of the varieties regarding the consistency of their hydraulic responses, the importance of the environment, the degree of isohydry in relation to stomatal responses to critical thresholds as well as drought resistance, and the implications for photosynthesis in the long term. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luis VILLALOBOS‐GONZÁLEZ (1), Constanza QUINTANA (1), Dayna DONAIRE (1), Mariana MUÑOZ‐ ARAYA (1), Nicolás FRANCK, Claudio PASTENES (1)

(1) Universidad de Chile, Facultad de Ciencias Agronómicas.

Contact the author

Keywords

ABA sensitivity, anisohydry, drought resistance, grapevine, stomatal conductance

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Winemaking options for the improvement of the attributes of the wines from grapes with different oenological potential and sanitary status

The aim of this work was to study winemaking alternatives that will optimize the quality of the Tannat wines, taking advantage of the grape’s oenological potential.

Tracking of sulfonated flavanol formation in a model wine during storage

The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.