GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Fertility assessment in Vitis vinifera L., cv. Alvarinho

Fertility assessment in Vitis vinifera L., cv. Alvarinho

Abstract

Context and purpose of the study – The Portuguese wine production is characterized by wide yield fluctuations, causing considerable implications in the economic performance of this sector. The possibility of predicting the yield in advance is crucial as it enables preliminary planning and management of the available resources. The present work aims to study and evaluate two different techniques for the assessment of vine fertility.

Material and methods – Based on the fact that the number of inflorescences is established during the first year of the grapevine reproductive cycle and with the aim of evaluating grapevine fertility in cv. Alvarinho, two experimental procedures were performed. First, grapevine bud dissections were made during the dormant stage, in order to count the number of inflorescence primordia and assess the bud fertility potential. At the same time, grapevine canes were collected and placed in a growth chamber. Their development was monitored and, 25 days after, when the inflorescences attained the Separated Flower Buttons stage the fertility of each bud was recorded. In spring, using the same grapevines from where the samples were collected, fertility was assessed in the field and correlation between both was studied. Statistical analysis was performed including logistic and Poisson regression models for dependent data.

Results – Even using high definition observation equipment, the bud dissection technique was highly fallible, not allowing for correct identification of inflorescence primordia. Regarding the second methodology, no statistically significant differences were detected between the fertility observed in the growth chamber and in the field. These findings validate the success of the technique in assessing bud fertility at the pruning stage, 10 months before harvest.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Anabela CARNEIRO1, Mariana COSTA1, António GRAÇA2, Natacha FONTES2, Rita GAIO3, Jorge QUEIROZ1

1 GreenUPorto, DGAOT, Faculty of Sciences, University of Porto, Campus Agrário Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal
2 SOGRAPE VINHOS, S.A., Rua 5 de outubro 4527, 4430-852 Avintes, Portugal
3 Department of Mathematics, Faculty of Sciences, and CMUP-Centre of Mathematics, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

Contact the author

Keywords

Alvarinho, Crop Forecasting, Fertility, Bud, Inflorescence

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Rapid optical method for tannins estimation in red wines

In this work, an innovative analytical method has been proposed for fast and reliable in-line analysis of tannins in wines; the method is fast, does not require sample preparation and is based on the selective reactivity of tannins in a mixture containing proteinaceous matter (i.e. gelatin), under pH 3.5, resulting in the formation of white cloudiness.

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.