GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Do high temperature extremes impact berry tannin composition?

Do high temperature extremes impact berry tannin composition?

Abstract

Context and purpose of the study – Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Material and methods – Three potted-vine experiments were conducted inside a UV-transparent glasshouse during the 2016-17 and 2018-19 seasons. Using fans blowing hot air onto individual bunches without affecting light exposure, several temperature-related parameters were tested on well-irrigated Shiraz vines. In order, these examined high day and/or night temperatures after fruit set (E-L 31, Coombes, 1995), day temperature intensities (Low: LT, High: HT and Very High: VHT) and durations (3 to 39 h) after véraison (E-L 36, ~10 °Brix), and high day temperature at two phenological stages (E-L 31 and/or E-L 36). Berries were sampled at regular intervals, peeled, ground, and skin and seed tannin composition individually analysed by LC-MS/MS after phloroglucinolysis.

Results – During Experiment 1, heat treatments were applied for three days (+8 °C) and/or three nights (+6 °C), with day maximum temperature reaching 44.8 °C and night maximum temperature reaching 32.8 °C. Berry size was immediately affected by day temperature, while skin tannin exhibited small differences with an increase in percentage of galloylation 15 days after the end of the treatment. During Experiment 2, LT, HT and VHT respectively reached a maximum of 37, 45, and 53 °C. VHT considerably impacted on berry physiology and composition, regardless of the treatment duration (12 or 30 h), leading to berry desiccation. Tannins extracted from the dried skin were significantly reduced with some flavan-3-ol subunits proportionally more degraded than others. While the effect on skin was substantial, seed tannins were only slightly affected. Night temperature at E-L 31 (Experiment 1) and day HT at E-L 36 (Experiment 2) affected other primary metabolites but not tannin composition. Experiment 3, conducted during the 2018-19 season, combined parameters for which tannin composition was affected during season 2016-17 to confirm observed trends.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Julia GOUOT1,2*, Jason SMITH1,3, Bruno HOLZAPFEL1,4, Celia BARRIL1,2

1 National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
2 School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
3 New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
4 New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, 2678, Australia

Contact the author

Keywords

Berry composition, Bunch heating, Day, Heat stress, High temperature, Phenological stage, Tannins

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a sustainable winery: revalorization of green CO2 for methane production

The FUELPHORIA project explores innovative pathways for sustainable energy production, with DEMO 2 focused on transforming winery-derived CO₂ into methane (CH₄) using renewable hydrogen (H₂).

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.