Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of late pruning on yield and wine composition in monastrell wines

Effect of late pruning on yield and wine composition in monastrell wines

Abstract

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers, particularly in arid and semi-arid areas. Our aim was to test late pruning as an useful tool to delay grape ripening and to assess the effects of this technique on the yield and wine composition, looking mainly to reduce the wine alcoholic content without reducing phenolic composition of the wines. A trial was established in a commercial vineyard comparing, in 2020 season, two vine training system (double cordon and goblet), two moments of pruning:

(i) winter (Control) and

(ii) before the basal bud burst (BBCH 07)(late-pruning, LP) and two harvest dates (12°and 14°Baumé).

In 2019, only goblet and harvest at 14°Baumé was tested. In 2019, and although there was a sharp decrease in yield, the composition of wine improve significantly (total acidity, colour intensity, anthocyanin and tannin), therefore we conducted the experiment in 2020 and this year late pruning were tested in two training system (goblet and double cordon) and two moments of harvest (12°and 14°Baume). When grapes were harvested at 12°Baumé, yield was not affected in both training system and late pruning slightly reduced alcohol content and increase total acidity, colour intensity, anthocyanin and tannin in the wines from both vineyards. When harvest was done when grapes reached 14° Baumé, late pruning significantly reduced yield, there was no effect on alcohol content and total acidity but LP increased colour intensity and anthocyanins in the wines of both vineyards. The effect of late pruning on harvest date were negligible for both training system (goblet and double cordon). However, if we compared the chromatic composition of LPT 12º wines with control wines made with 14ºBaume grapes, we could observed that they were similar but alcohol was 20% lower in LP 12º wines. Therefore, late pruning could be an useful tool to improve phenolic composition of wines, allowing a reduction of their alcohol content. It is clear that delayed pruning is a simple and cost-effective technique that may allow the semi-arid regions winegrowers to adapt to global warming, harvesting the grapes with lower sugar content without harming the quality of the wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Martínez Moreno

University of Murcia,Pilar Martínez Pérez (University of Murcia) Ana Belén Bautista Ortín (University of Murcia) Encarna Gómez Plaza (University of Murcia)

Contact the author

Keywords

global warming, phenology, govelet, Vitis vinifera

Citation

Related articles…

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

The start of Croatian grapevine breeding program

Modern viticulture in Croatia and the world is mainly based on the grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries with the aim of developing resistant varieties possessing high quality level. Coratia is rich in in native grapevine varieties that are the basis of wine production, and are not included in the breeding programs of other countries.

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Nel biennio 2008-2009, nell’ambito di un progetto multidisciplinare coordinato e finanziato dal Consorzio Tuscania, 4 vigneti in differenti zone della Toscana sono stati monitorati con strumenti di proximal sensing al fine di valutare la variabilità riscontrabile e ottenere delle indicazioni sulle risposte vegetative delle piante e quanti-qualitative delle produzioni.