GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Abstract

Context and purpose of the study – Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.
Material and methods – This experiment was carried out in 2018 the south of France at the INRA’s Experimental Unit of Pech Rouge (Gruissan). Five cultivars were studied: INRA 1, 2, 3 and 4 in comparison to Syrah, all genotypes being grafted on 140Ru. Each cultivar was represented by 60 vines, with 30 vines being irrigated (I) and 30 vines without irrigation (NI). Each treatment x genotype was done in triplicated (3 x 10 vines). Irrigation was applied weekly from 3rd July until 11th September. Predawn leaf water potential (ѰPd) was measured weekly from mid-July to mid-September. When ѰPd between I and NI treatments were evidenced, physiological measurements –photosynthesis (A), stomata conductance (gs) and transpiration (E)- were weekly performed and water use efficiency (WUE= A/E) was calculated.
Results – In all varieties, we observed variations of ѰPd between I and NI, with Syrah and INRA 2 showing the maximum and minimum difference respectively. A, gs and E decreased for all genotypes in relation with ѰPd. Syrah showed the lowest ѰPd (-0.66 MPa averagely), A, gs and E. WUE in all of the varieties, exception INRA 3, was increased as water potential decreased, but in INRA 3 WUE slightly decreased in less values of ѰPd. The physiological parameters were classified to three level of predawn water potential: [0.2-0.4] MPa (moderate stress), [0.4-0.6] MPa (strong stress) and [0.6-0.8] MPa (severe stress) respectively. Under moderate stress, INRA 1 showed the higher A with 9.7 µmol m-2 S-1, but gs and E were maximum for INRA 4. Under a severe water deficit, A and WUE of INRA 1 were 6.44 µmol m-2 S-1 and 2.85 respectively, which is higher than other varieties, indicating INRA 1 as the most drought tolerant variety. These first results should not be considered conclusive.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sajad GHASEDI YOLGHONOLOU 1,2*, Maria Julia CATELÉN4, Leandro ARRILLAGA LOPEZ5, Emmanuelle GARCIA1, Yannick SIRE1, Laurent TORREGROSA1,3, Hernán OJEDA1

1 INRA, Experimental Unit of Pech Rouge, Gruissan, France
2 Faculty of Agriculture, Malayer University, Malayer, Iran
3 AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
4 U.N. Cuyo, Master of Viticulture and Oenology, Mendoza, Argentine
5 Faculty of Agriculture, University of Republique, Montevideo, Uruguay

Contact the author

Keywords

Water deficit, new varieties, photosynthesis, water use efficiency, climate changes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,