GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Abstract

Context and purpose of the study – Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.
Material and methods – This experiment was carried out in 2018 the south of France at the INRA’s Experimental Unit of Pech Rouge (Gruissan). Five cultivars were studied: INRA 1, 2, 3 and 4 in comparison to Syrah, all genotypes being grafted on 140Ru. Each cultivar was represented by 60 vines, with 30 vines being irrigated (I) and 30 vines without irrigation (NI). Each treatment x genotype was done in triplicated (3 x 10 vines). Irrigation was applied weekly from 3rd July until 11th September. Predawn leaf water potential (ѰPd) was measured weekly from mid-July to mid-September. When ѰPd between I and NI treatments were evidenced, physiological measurements –photosynthesis (A), stomata conductance (gs) and transpiration (E)- were weekly performed and water use efficiency (WUE= A/E) was calculated.
Results – In all varieties, we observed variations of ѰPd between I and NI, with Syrah and INRA 2 showing the maximum and minimum difference respectively. A, gs and E decreased for all genotypes in relation with ѰPd. Syrah showed the lowest ѰPd (-0.66 MPa averagely), A, gs and E. WUE in all of the varieties, exception INRA 3, was increased as water potential decreased, but in INRA 3 WUE slightly decreased in less values of ѰPd. The physiological parameters were classified to three level of predawn water potential: [0.2-0.4] MPa (moderate stress), [0.4-0.6] MPa (strong stress) and [0.6-0.8] MPa (severe stress) respectively. Under moderate stress, INRA 1 showed the higher A with 9.7 µmol m-2 S-1, but gs and E were maximum for INRA 4. Under a severe water deficit, A and WUE of INRA 1 were 6.44 µmol m-2 S-1 and 2.85 respectively, which is higher than other varieties, indicating INRA 1 as the most drought tolerant variety. These first results should not be considered conclusive.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sajad GHASEDI YOLGHONOLOU 1,2*, Maria Julia CATELÉN4, Leandro ARRILLAGA LOPEZ5, Emmanuelle GARCIA1, Yannick SIRE1, Laurent TORREGROSA1,3, Hernán OJEDA1

1 INRA, Experimental Unit of Pech Rouge, Gruissan, France
2 Faculty of Agriculture, Malayer University, Malayer, Iran
3 AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
4 U.N. Cuyo, Master of Viticulture and Oenology, Mendoza, Argentine
5 Faculty of Agriculture, University of Republique, Montevideo, Uruguay

Contact the author

Keywords

Water deficit, new varieties, photosynthesis, water use efficiency, climate changes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine tartaric stability based on hydrogel application

Tartrates are salts of tartaric acid that occur naturally in wine and lead to sediments that cause consumers’ rejection. There are currently different treatments to prevent its occurrence, with cold stabilization being the most traditional and well-known method.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Approaches for estimating the age of old vineyards in Campo de Borja

Determining the age of a vineyard is essential for understanding its influence on wine quality and characteristics.

Terroir et marché des A.O.C

Cette communication sera basée sur les résultats d’une étude auprès des consommateurs réalisée par la société G3 pour l’I.N.A.O. sur les attitudes des consommateurs vis à vis des produits de terroir et des A.O.C. et sur un mémoire de DEA soutenu par Monsieur J-C. DURIEUX à l’Université de Paris X Nanterre, consacré aux variables explicatives du comportement d’achat des vins A.O.C.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.