GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Abstract

Context and purpose of the study – Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.
Material and methods – This experiment was carried out in 2018 the south of France at the INRA’s Experimental Unit of Pech Rouge (Gruissan). Five cultivars were studied: INRA 1, 2, 3 and 4 in comparison to Syrah, all genotypes being grafted on 140Ru. Each cultivar was represented by 60 vines, with 30 vines being irrigated (I) and 30 vines without irrigation (NI). Each treatment x genotype was done in triplicated (3 x 10 vines). Irrigation was applied weekly from 3rd July until 11th September. Predawn leaf water potential (ѰPd) was measured weekly from mid-July to mid-September. When ѰPd between I and NI treatments were evidenced, physiological measurements –photosynthesis (A), stomata conductance (gs) and transpiration (E)- were weekly performed and water use efficiency (WUE= A/E) was calculated.
Results – In all varieties, we observed variations of ѰPd between I and NI, with Syrah and INRA 2 showing the maximum and minimum difference respectively. A, gs and E decreased for all genotypes in relation with ѰPd. Syrah showed the lowest ѰPd (-0.66 MPa averagely), A, gs and E. WUE in all of the varieties, exception INRA 3, was increased as water potential decreased, but in INRA 3 WUE slightly decreased in less values of ѰPd. The physiological parameters were classified to three level of predawn water potential: [0.2-0.4] MPa (moderate stress), [0.4-0.6] MPa (strong stress) and [0.6-0.8] MPa (severe stress) respectively. Under moderate stress, INRA 1 showed the higher A with 9.7 µmol m-2 S-1, but gs and E were maximum for INRA 4. Under a severe water deficit, A and WUE of INRA 1 were 6.44 µmol m-2 S-1 and 2.85 respectively, which is higher than other varieties, indicating INRA 1 as the most drought tolerant variety. These first results should not be considered conclusive.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sajad GHASEDI YOLGHONOLOU 1,2*, Maria Julia CATELÉN4, Leandro ARRILLAGA LOPEZ5, Emmanuelle GARCIA1, Yannick SIRE1, Laurent TORREGROSA1,3, Hernán OJEDA1

1 INRA, Experimental Unit of Pech Rouge, Gruissan, France
2 Faculty of Agriculture, Malayer University, Malayer, Iran
3 AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
4 U.N. Cuyo, Master of Viticulture and Oenology, Mendoza, Argentine
5 Faculty of Agriculture, University of Republique, Montevideo, Uruguay

Contact the author

Keywords

Water deficit, new varieties, photosynthesis, water use efficiency, climate changes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR in the study of deuterium distribution in intracellular water and fermentation products of grape carbohydrates using ethyl alcohol as an example

The paper presents results that develop the results of studies carried out in 2022-2023 under the OIV grant on the topic of distribution of deuterium (2H(D)) in the intracellular water of grapes and wines, taking into account the impact of natural, climatic and technogenic factors using quantitative nuclear magnetic resonance spectroscopy (qNMR).

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).