GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Abstract

Context and purpose of the study – The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Material and methods – Soil samples were collected from vineyards with a conventional and biodynamic management of Chardonnay vine cultivation system. The soil samples were collected in the vines line of 0-20, and 08 samples were randomly sampled in each hectare of the vineyard. Then, the chemical analysis was performed using the Rolas methodology and soil quality analysis to identify fertility and humification to measure the environmental impact caused in the soil.

Results – The results showed that the use of the soil analysis is an important tool for monitoring the vineyard, mainly in relation to the climatic conditions of the region winery in study. The analysis showed that the soil has the capacity to retain nutrients, capillarity, thickness, heat emission, exposure to the sun, physical properties and, especially, control of water supply, a determinant factor for the good quality of vinífera. The study concluded that the biodynamic contribute to fertility and the reduction of soil acidity. In addition, identified that the production of inputs for the treatment of planting, the agricultural unit, allows a better interaction with the environment and the use of raw materials and waste.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Cláudia Brazil MARQUES1 *, Paulo César do NASCIMENTO2, kelly Lissandra BRUCH³, João Armando DESSIMON4

Universidade Federal do Rio Grande do Sul- UFRGS- Departamento de Pós-Graduação Doutorado em Agronegócios- CEPAN- Av. Bento Gonçalves, 7712 – CEP 91540-000 – Porto Alegre – RS – Brasil
2 Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Departamento de Solos. Av. Bento Gonçalves, 7712 Agronomia. 91540000 – Porto Alegre, RS – Brasil
3 Universidade Federal do Rio Grande do Sul, Faculdade de Direito. Avenida João Pessoa, 80- Centro Histórico. 90040000 – Porto Alegre, RS – Brasil
4 Universidade Federal do Rio Grande do Sul, Faculdade de Ciências Econômicas, Departamento de Ciências Econômicas. Av. João Pessoa, 31 – Sala 11- Centro- 90040-000 – Porto Alegre, RS – Brasil

Contact the author

Keywords

environmental impact, soil analysis, fertility, cropping system, vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.