GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Abstract

Context and purpose of the study – The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Material and methods – Soil samples were collected from vineyards with a conventional and biodynamic management of Chardonnay vine cultivation system. The soil samples were collected in the vines line of 0-20, and 08 samples were randomly sampled in each hectare of the vineyard. Then, the chemical analysis was performed using the Rolas methodology and soil quality analysis to identify fertility and humification to measure the environmental impact caused in the soil.

Results – The results showed that the use of the soil analysis is an important tool for monitoring the vineyard, mainly in relation to the climatic conditions of the region winery in study. The analysis showed that the soil has the capacity to retain nutrients, capillarity, thickness, heat emission, exposure to the sun, physical properties and, especially, control of water supply, a determinant factor for the good quality of vinífera. The study concluded that the biodynamic contribute to fertility and the reduction of soil acidity. In addition, identified that the production of inputs for the treatment of planting, the agricultural unit, allows a better interaction with the environment and the use of raw materials and waste.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Cláudia Brazil MARQUES1 *, Paulo César do NASCIMENTO2, kelly Lissandra BRUCH³, João Armando DESSIMON4

Universidade Federal do Rio Grande do Sul- UFRGS- Departamento de Pós-Graduação Doutorado em Agronegócios- CEPAN- Av. Bento Gonçalves, 7712 – CEP 91540-000 – Porto Alegre – RS – Brasil
2 Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Departamento de Solos. Av. Bento Gonçalves, 7712 Agronomia. 91540000 – Porto Alegre, RS – Brasil
3 Universidade Federal do Rio Grande do Sul, Faculdade de Direito. Avenida João Pessoa, 80- Centro Histórico. 90040000 – Porto Alegre, RS – Brasil
4 Universidade Federal do Rio Grande do Sul, Faculdade de Ciências Econômicas, Departamento de Ciências Econômicas. Av. João Pessoa, 31 – Sala 11- Centro- 90040-000 – Porto Alegre, RS – Brasil

Contact the author

Keywords

environmental impact, soil analysis, fertility, cropping system, vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.