GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

Abstract

Context and purpose of the study – The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Material and methods – Soil samples were collected from vineyards with a conventional and biodynamic management of Chardonnay vine cultivation system. The soil samples were collected in the vines line of 0-20, and 08 samples were randomly sampled in each hectare of the vineyard. Then, the chemical analysis was performed using the Rolas methodology and soil quality analysis to identify fertility and humification to measure the environmental impact caused in the soil.

Results – The results showed that the use of the soil analysis is an important tool for monitoring the vineyard, mainly in relation to the climatic conditions of the region winery in study. The analysis showed that the soil has the capacity to retain nutrients, capillarity, thickness, heat emission, exposure to the sun, physical properties and, especially, control of water supply, a determinant factor for the good quality of vinífera. The study concluded that the biodynamic contribute to fertility and the reduction of soil acidity. In addition, identified that the production of inputs for the treatment of planting, the agricultural unit, allows a better interaction with the environment and the use of raw materials and waste.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Cláudia Brazil MARQUES1 *, Paulo César do NASCIMENTO2, kelly Lissandra BRUCH³, João Armando DESSIMON4

Universidade Federal do Rio Grande do Sul- UFRGS- Departamento de Pós-Graduação Doutorado em Agronegócios- CEPAN- Av. Bento Gonçalves, 7712 – CEP 91540-000 – Porto Alegre – RS – Brasil
2 Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Departamento de Solos. Av. Bento Gonçalves, 7712 Agronomia. 91540000 – Porto Alegre, RS – Brasil
3 Universidade Federal do Rio Grande do Sul, Faculdade de Direito. Avenida João Pessoa, 80- Centro Histórico. 90040000 – Porto Alegre, RS – Brasil
4 Universidade Federal do Rio Grande do Sul, Faculdade de Ciências Econômicas, Departamento de Ciências Econômicas. Av. João Pessoa, 31 – Sala 11- Centro- 90040-000 – Porto Alegre, RS – Brasil

Contact the author

Keywords

environmental impact, soil analysis, fertility, cropping system, vineyard

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.