GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

Abstract

Context and purpose of the study – For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Material and methods – A field trial was established in a Pinot noir vineyard growing in the Salinas Valley of California to compare standard 30 cm long dormant benchgrafts to 90 cm tall benchgrafts that were produced by using a longer rootstock cutting. The experimental treatments were: 1) standard field grown dormant benchgrafts, 30 cm; 2) tall dormant potted benchgrafts, 90 cm; and 3) tall green growing potted, 90 cm. Dormant vines were planted on March 13, 2015 and the green growing benchgrafts on August 6, 2015. The tall vines were trained to bilateral cordons in the first year where growth was adequate. Standard vines were trained to a single trunk shoot at the end of the first year and cordon training started in year 2. All treatments were evaluated for their influence on growth and productivity during the first four years of vine establishment.

Results – The dormant tall benchgrafts at the end of year one produced vines with larger diameter trunks and growth was adequate to form the cordons. In year 2 and 3 dormant tall vines had larger trunk and cordon diameters and pruning weights, the standard was intermediate, and the tall green growing had the smallest diameters and pruning weights. In year 2 the dormant tall vines produced the highest yield; the standard was intermediate and the green growing tall vines the lowest. In year 3 the dormant tall and standard vines produced similar yield and the green growing tall vines had lower yields. Fruit composition for the dormant tall and standard vines was not different in years 2, while Brix was higher and the titratable acidity lower for the very limited fruit produced on the green growing tall vines.In year 3 there was no difference in Brix between the treatments. The results from this trial would suggest that both plant material and vine training method in the first year could advance the development of the permanent framework of the vine and promote the potential for earlier vine production especially when either of these factors improves total vine growth in the year of planting and that growth increase is used to form the vine’s permanent framework. As observed in previous studies dormant benchgrafts had better vine development and early yield than green growing plants under the site conditions of this study.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Larry J. BETTIGA

University of California Cooperative Extension, 1432 Abbott Street, Salinas, CA 93901, USA

Contact the author

Keywords

Grape, vine development, establishment, benchgraft, training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Reusable system for wine bottles: An analysis of acceptance among German wine consumers

Consumer demands for environmentally friendly products, including wine, are constantly increasing.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.

A new step toward the comprehensive valorisation of grape marc through subcritical water extraction of polysaccharides

Winemaking generates a significant amount of waste. Grape marc, the main solid residue, constitutes 20-25% of the pressed grapes and approximately 8-9 million tons are produced globally each year.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).