GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

Abstract

Context and purpose of the study – For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Material and methods – A field trial was established in a Pinot noir vineyard growing in the Salinas Valley of California to compare standard 30 cm long dormant benchgrafts to 90 cm tall benchgrafts that were produced by using a longer rootstock cutting. The experimental treatments were: 1) standard field grown dormant benchgrafts, 30 cm; 2) tall dormant potted benchgrafts, 90 cm; and 3) tall green growing potted, 90 cm. Dormant vines were planted on March 13, 2015 and the green growing benchgrafts on August 6, 2015. The tall vines were trained to bilateral cordons in the first year where growth was adequate. Standard vines were trained to a single trunk shoot at the end of the first year and cordon training started in year 2. All treatments were evaluated for their influence on growth and productivity during the first four years of vine establishment.

Results – The dormant tall benchgrafts at the end of year one produced vines with larger diameter trunks and growth was adequate to form the cordons. In year 2 and 3 dormant tall vines had larger trunk and cordon diameters and pruning weights, the standard was intermediate, and the tall green growing had the smallest diameters and pruning weights. In year 2 the dormant tall vines produced the highest yield; the standard was intermediate and the green growing tall vines the lowest. In year 3 the dormant tall and standard vines produced similar yield and the green growing tall vines had lower yields. Fruit composition for the dormant tall and standard vines was not different in years 2, while Brix was higher and the titratable acidity lower for the very limited fruit produced on the green growing tall vines.In year 3 there was no difference in Brix between the treatments. The results from this trial would suggest that both plant material and vine training method in the first year could advance the development of the permanent framework of the vine and promote the potential for earlier vine production especially when either of these factors improves total vine growth in the year of planting and that growth increase is used to form the vine’s permanent framework. As observed in previous studies dormant benchgrafts had better vine development and early yield than green growing plants under the site conditions of this study.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Larry J. BETTIGA

University of California Cooperative Extension, 1432 Abbott Street, Salinas, CA 93901, USA

Contact the author

Keywords

Grape, vine development, establishment, benchgraft, training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.