GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Abstract

Context and purpose of the study – Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes.

Material and methods – In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established. Treatments were replicated four times accordingly to a randomized block design. The impact of deficit irrigation treatments on vine physiology and berry metabolism was characterized with eco-physiological, biochemical, and molecular analyses. Starting three weeks after fruit set, midday-leaf water potential was measured every 7-14 days and leaf gas exchanges every 14-21 days. Berry samplings were conducted every 7-14 days to assess the effect of deficit irrigation treatments on berry sugar (total soluble solid, TSS), acid (titratable acidity, TA), and terpene concentration, as well as the expression of terpene genes. Free and glycosylated terpenes were identified and quantified using a SPME-GC-MS and a LI-GC-MS, respectively. Gene expression was analyzed using a quantitative RT-PCR.

Results – Midday leaf water potential, photosynthesis, and transpiration rates were reduced by deficit irrigation. ED, LD, and PD reduced vine yield when compared to CN, but LD reduction was small and not consistent among years. Sugar levels were also reduced by deficit irrigation, particularly by LD and PD. Total free terpenes were marginally affected by deficit irrigation treatments (P = 0.065); however, the concentration of specific terpenes, such as geraniol, was significantly (P< 0.05) higher in LD than in CN berries. LD did not increase the expression of terpene genes (e.g., VviDXSs, VviHDR, VviTPSs), suggesting that the observed increase in the concentration of some free terpenes was not regulated at the transcriptional level. Total glycosylated terpenes at harvest did not change among treatments.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Yevgen KOVALENKO1, Ricco TINDJAU1, Simone Diego CASTELLARIN1

1 Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T0C1, Canada

Contact the author

Keywords

Aroma, Grapevine, Ripening, Water Deficit, Yield

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.