GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Abstract

Context and purpose of the study – Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes.

Material and methods – In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established. Treatments were replicated four times accordingly to a randomized block design. The impact of deficit irrigation treatments on vine physiology and berry metabolism was characterized with eco-physiological, biochemical, and molecular analyses. Starting three weeks after fruit set, midday-leaf water potential was measured every 7-14 days and leaf gas exchanges every 14-21 days. Berry samplings were conducted every 7-14 days to assess the effect of deficit irrigation treatments on berry sugar (total soluble solid, TSS), acid (titratable acidity, TA), and terpene concentration, as well as the expression of terpene genes. Free and glycosylated terpenes were identified and quantified using a SPME-GC-MS and a LI-GC-MS, respectively. Gene expression was analyzed using a quantitative RT-PCR.

Results – Midday leaf water potential, photosynthesis, and transpiration rates were reduced by deficit irrigation. ED, LD, and PD reduced vine yield when compared to CN, but LD reduction was small and not consistent among years. Sugar levels were also reduced by deficit irrigation, particularly by LD and PD. Total free terpenes were marginally affected by deficit irrigation treatments (P = 0.065); however, the concentration of specific terpenes, such as geraniol, was significantly (P< 0.05) higher in LD than in CN berries. LD did not increase the expression of terpene genes (e.g., VviDXSs, VviHDR, VviTPSs), suggesting that the observed increase in the concentration of some free terpenes was not regulated at the transcriptional level. Total glycosylated terpenes at harvest did not change among treatments.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Yevgen KOVALENKO1, Ricco TINDJAU1, Simone Diego CASTELLARIN1

1 Wine Research Centre, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T0C1, Canada

Contact the author

Keywords

Aroma, Grapevine, Ripening, Water Deficit, Yield

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mannoprotein extracts from wine lees: characterization and impact on wine properties

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Can grapevine intra-varietal genetic variability be a tool for climate change adaptation? A case study at a hot and dry environment

Climate change projections point to an increase of temperatures and changes in rainfall patterns in the mediterranean region.

Wine tourism as a catalyst for sustainable competitive advantage: unraveling the role of winery image and reputation

This study examines the impact of wine tourism development on the sustainable competitive advantage of Spanish wineries, while also exploring the mediating roles of winery image and winery reputation in this relationship.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The aim of this study is to provide an overview of the terroir of Saint-Romain, Burgundy, based on three main information sources: official data relating to vines (CVI), soil cartography and a survey of winegrowers’ practices.