IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Abstract

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process. Hence, Finos and Manzanillas wines are produced by biological aging, Oloroso wines by oxidative aging, and wines such as Amontillado and Palo Cortado wines share both types of aging during their production. The great diversity of high-quality wines on the market and the increase in their demand makes it is necessary to characterize them in order to establish quality and authenticity control parameters, thus protecting and assuring consumers that the product they are purchasing on the market has the quality and characteristics declared. The focus on the aroma has been object of study for the characterization of these products since it is considered one of the most relevant quality criteria for wine. Despite the fact that some authors have previously studied the volatile profile of some of these fortified PDO wines, scarce research has been done to assess the volatile composition of the four Spanish PDO fortified wines [1,2,3]. In this context, the aim of this work was to study and compare the characteristic volatile profile of different fortified wines from each Spanish PDO by headspace solid phase micro-extraction (HS-SPME) in conjunction with gas chromatography-mass spectrometry (GC-MS). Chemometric techniques such as PARAFAC2 was applied to reduce the problems associated with GC-MS analysis of complex mixtures and to obtain the maximum information of the volatile profile for distinguishing between samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to study the differentiation of the samples. Volatile composition of the samples allowed the differentiation and classification of the different fortified wines based on the presence of certain compounds which could be considered markers of quality and authenticity for each PDO and type of wine.

References

[1] García-Moreno et al., (2021). LWT – Food Science and Technology,140,110706.
[2] Hevia, K., Castro, R., Natera, R., González-García, J. A., Barroso, C. G., & Durán-Guerrero, E. (2016). Chromatographia, 79(11–12), 763–771.
[3] Zea, L., Moyano, L., Moreno, J., Cortes, B., & Medina, M. (2001). Food Chemistry, 75(1), 79–84.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ubeda Cristina¹, Cortejosa David¹, Morales María Lourdes¹, Callejón Raquel María¹ and Ríos-Reina Rocío¹

1Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain

Contact the author

Keywords

fortified wines; protected designation of origin; ageing; volatile compounds; SPME

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE).

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.