IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Abstract

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process. Hence, Finos and Manzanillas wines are produced by biological aging, Oloroso wines by oxidative aging, and wines such as Amontillado and Palo Cortado wines share both types of aging during their production. The great diversity of high-quality wines on the market and the increase in their demand makes it is necessary to characterize them in order to establish quality and authenticity control parameters, thus protecting and assuring consumers that the product they are purchasing on the market has the quality and characteristics declared. The focus on the aroma has been object of study for the characterization of these products since it is considered one of the most relevant quality criteria for wine. Despite the fact that some authors have previously studied the volatile profile of some of these fortified PDO wines, scarce research has been done to assess the volatile composition of the four Spanish PDO fortified wines [1,2,3]. In this context, the aim of this work was to study and compare the characteristic volatile profile of different fortified wines from each Spanish PDO by headspace solid phase micro-extraction (HS-SPME) in conjunction with gas chromatography-mass spectrometry (GC-MS). Chemometric techniques such as PARAFAC2 was applied to reduce the problems associated with GC-MS analysis of complex mixtures and to obtain the maximum information of the volatile profile for distinguishing between samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to study the differentiation of the samples. Volatile composition of the samples allowed the differentiation and classification of the different fortified wines based on the presence of certain compounds which could be considered markers of quality and authenticity for each PDO and type of wine.

References

[1] García-Moreno et al., (2021). LWT – Food Science and Technology,140,110706.
[2] Hevia, K., Castro, R., Natera, R., González-García, J. A., Barroso, C. G., & Durán-Guerrero, E. (2016). Chromatographia, 79(11–12), 763–771.
[3] Zea, L., Moyano, L., Moreno, J., Cortes, B., & Medina, M. (2001). Food Chemistry, 75(1), 79–84.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ubeda Cristina¹, Cortejosa David¹, Morales María Lourdes¹, Callejón Raquel María¹ and Ríos-Reina Rocío¹

1Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain

Contact the author

Keywords

fortified wines; protected designation of origin; ageing; volatile compounds; SPME

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Valorization of wine lees for oenological interest by eco-responsible processes

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.