GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Abstract

Context and purpose of the study – Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Material and methods – The experiment was carried out for two consecutive years in a vineyard located in the south of France on a calcaric cambisol under a Mediterranean climate (468 and 487 mm of rainfall for 2016-17 and 2017-18 winters respectively). Grapevines (Mourvèdre) were planted in 2008 at a density of 4000 vines per hectare. For the two consecutive years, 9 species (Achillea millefolium, Avena sativa, Dactylis glomerata, Medicago lupulina, Medicago sativa, Plantago coronopus, Poterium sanguisorba, Trifolium fragiferum and Vicia villosa) were sown after harvest and destroyed after budburst. Predawn leaf water potential and leaf chlorophyll content were measured using a pressure chamber and a SPAD© chloprophyll-meter device for all treatments (9 service crops, spontaneous vegetation and bare soil) on 10 plants at grapevine’s fruit set to assess early water and nitrogen status of the vine. At harvest, the yield and yield components’ grapevine were measured for all treatments on the same plants. All treatments were compared with tilled and spontaneous cover systems using ANOVA and post-hoc Tukey tests form multiple comparison of means (p<0,05).

Results– At fruit set, the leaf water potentials indicated an absent to low stress depending on the treatment: Plantago coronopus (-1,6.105 Pa) and Poterium sanguisorba (2,8.105 Pa) were the least and the most constrained treatments respectively. The range of SPAD values between 34 and 39 indicated that nitrogen needs are met (higher values for Vicia sativa and lower values for Dactylis glomerata and Poterium sanguisorba). At harvest, the mean yields and the mean number of bunches per plant ranged from 2,8 to 4,4 kg of grapes and from 12,8 to 17,3 respectively, without any significant difference between the treatments. The only significant difference was observed for bunch fresh weight (Avena sativa (288 g) significantly higher than Poterium Sanguisorba (156 g)). In conclusion, after two years of temporary service crop, no significant reduction in yield was noticed, but the treatments were differentiated for their water and nitrogen status, and for the fresh mass of a bunch depending on the chosen species. Our results reinforce the need for long-term monitoring of service crop trials in vineyards.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Aurélie METAY, Léo GARCIA, Yvan BOUISSON, Clément ENARD, Bénédicte OHL, Raphaël METRAL, Christian GARY

1 UMR SYSTEM, Montpellier SupAgro, INRA, CIRAD, CIHEAM-IAMM, Univ Montpellier, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

Grapevine, Service Crop, Yield, Predawn Leaf Water Potential, Nitrogen, Competition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.