GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Abstract

Context and purpose of the study – Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Material and methods – The experiment was carried out for two consecutive years in a vineyard located in the south of France on a calcaric cambisol under a Mediterranean climate (468 and 487 mm of rainfall for 2016-17 and 2017-18 winters respectively). Grapevines (Mourvèdre) were planted in 2008 at a density of 4000 vines per hectare. For the two consecutive years, 9 species (Achillea millefolium, Avena sativa, Dactylis glomerata, Medicago lupulina, Medicago sativa, Plantago coronopus, Poterium sanguisorba, Trifolium fragiferum and Vicia villosa) were sown after harvest and destroyed after budburst. Predawn leaf water potential and leaf chlorophyll content were measured using a pressure chamber and a SPAD© chloprophyll-meter device for all treatments (9 service crops, spontaneous vegetation and bare soil) on 10 plants at grapevine’s fruit set to assess early water and nitrogen status of the vine. At harvest, the yield and yield components’ grapevine were measured for all treatments on the same plants. All treatments were compared with tilled and spontaneous cover systems using ANOVA and post-hoc Tukey tests form multiple comparison of means (p<0,05).

Results– At fruit set, the leaf water potentials indicated an absent to low stress depending on the treatment: Plantago coronopus (-1,6.105 Pa) and Poterium sanguisorba (2,8.105 Pa) were the least and the most constrained treatments respectively. The range of SPAD values between 34 and 39 indicated that nitrogen needs are met (higher values for Vicia sativa and lower values for Dactylis glomerata and Poterium sanguisorba). At harvest, the mean yields and the mean number of bunches per plant ranged from 2,8 to 4,4 kg of grapes and from 12,8 to 17,3 respectively, without any significant difference between the treatments. The only significant difference was observed for bunch fresh weight (Avena sativa (288 g) significantly higher than Poterium Sanguisorba (156 g)). In conclusion, after two years of temporary service crop, no significant reduction in yield was noticed, but the treatments were differentiated for their water and nitrogen status, and for the fresh mass of a bunch depending on the chosen species. Our results reinforce the need for long-term monitoring of service crop trials in vineyards.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Aurélie METAY, Léo GARCIA, Yvan BOUISSON, Clément ENARD, Bénédicte OHL, Raphaël METRAL, Christian GARY

1 UMR SYSTEM, Montpellier SupAgro, INRA, CIRAD, CIHEAM-IAMM, Univ Montpellier, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

Grapevine, Service Crop, Yield, Predawn Leaf Water Potential, Nitrogen, Competition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

Monitoring of mannoprotein cessions during wine aging on lees: development of a simple enzymatic method

Mannoproteins are polysaccharides released by Saccharomyces cerevisiae yeast during alcoholic fermentation or by enzymatic action during aging on yeast lees (autolysis). These molecules play a major role in wine characteristics processing, namely, in the tartaric stabilization and protein haze prevention; moreover, they improve color stability and reduce astringency.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts. This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L. Alcoholic fermentations in synthetic must were performed with the strain QA23.

Double success of combining technical management with low pesticide inputs in the vineyard to obtain PDO wines in France

Viticulture is a major contributor to the antagonism of positive reputation and negative environmental impacts of agriculture. Vine contributes to structure landscape in the world, resulting, for example, in the delimitation of protected designations of origin (PDO). PDO vine is currently subject to the double challenge of sustainability and climate change adaptation. As vine is very sensitive to diseases and pests, vine requires a high use of pesticides to achieve its quality and yield goals. This high need for pesticides is the most important negative impact of environmental components.