GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Abstract

Context and purpose of the study – Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Material and methods – The experiment was carried out for two consecutive years in a vineyard located in the south of France on a calcaric cambisol under a Mediterranean climate (468 and 487 mm of rainfall for 2016-17 and 2017-18 winters respectively). Grapevines (Mourvèdre) were planted in 2008 at a density of 4000 vines per hectare. For the two consecutive years, 9 species (Achillea millefolium, Avena sativa, Dactylis glomerata, Medicago lupulina, Medicago sativa, Plantago coronopus, Poterium sanguisorba, Trifolium fragiferum and Vicia villosa) were sown after harvest and destroyed after budburst. Predawn leaf water potential and leaf chlorophyll content were measured using a pressure chamber and a SPAD© chloprophyll-meter device for all treatments (9 service crops, spontaneous vegetation and bare soil) on 10 plants at grapevine’s fruit set to assess early water and nitrogen status of the vine. At harvest, the yield and yield components’ grapevine were measured for all treatments on the same plants. All treatments were compared with tilled and spontaneous cover systems using ANOVA and post-hoc Tukey tests form multiple comparison of means (p<0,05).

Results– At fruit set, the leaf water potentials indicated an absent to low stress depending on the treatment: Plantago coronopus (-1,6.105 Pa) and Poterium sanguisorba (2,8.105 Pa) were the least and the most constrained treatments respectively. The range of SPAD values between 34 and 39 indicated that nitrogen needs are met (higher values for Vicia sativa and lower values for Dactylis glomerata and Poterium sanguisorba). At harvest, the mean yields and the mean number of bunches per plant ranged from 2,8 to 4,4 kg of grapes and from 12,8 to 17,3 respectively, without any significant difference between the treatments. The only significant difference was observed for bunch fresh weight (Avena sativa (288 g) significantly higher than Poterium Sanguisorba (156 g)). In conclusion, after two years of temporary service crop, no significant reduction in yield was noticed, but the treatments were differentiated for their water and nitrogen status, and for the fresh mass of a bunch depending on the chosen species. Our results reinforce the need for long-term monitoring of service crop trials in vineyards.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Aurélie METAY, Léo GARCIA, Yvan BOUISSON, Clément ENARD, Bénédicte OHL, Raphaël METRAL, Christian GARY

1 UMR SYSTEM, Montpellier SupAgro, INRA, CIRAD, CIHEAM-IAMM, Univ Montpellier, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

Grapevine, Service Crop, Yield, Predawn Leaf Water Potential, Nitrogen, Competition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

Interaction between commercial mannoproteins and phenolic compounds of two red wines from different Portuguese grape cultivars

The interaction between mannoproteins and wine phenolic compounds is a subject of great interest as some studies show the possible impact in color stability and an improvement in the sensory characteristics namely the reduction of red wine astringency.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.