GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Characterization of different clone candidates of xinomavro according to their phenolic composition

Characterization of different clone candidates of xinomavro according to their phenolic composition

Abstract

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Material and methods ‐ Grapes were collected in vintage 2016, from an established Xinomavro vineyard, planted with the nine clones each one represented by fifty plants. The vineyard was established in 2011, with planted material selected according to the corresponding E.U. legislation for vine clone selection. Grapes were collected at harvest; general chemical analyses of each clone were recorded and the grapes were vinified under the same winemaking protocol and conditions. Monomeric anthocyanins, tannin mean degree of polymerization (mDP), galloylation percentage (%G), percentage of prodelphinidins (% P) and total tannin content, were determined in the produced wines by High Performance Liquid Chromatographer (HPLC) and spectrophotometer.

Results ‐ In most analyses performed an influence of clone selection was observed. Clones XE1, X19, X37, X35 and X31 differentiate from the clones evaluated in parameters crucial for wine quality such as maturity, acidity, anthocyanin, phenolic content and composition. It is therefore a step towards identifying clone characteristics dependent to the viticulture and winemaking needs. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Evelina IGGOUMENAKI (1, 2), Sofoklis PETROPOULOS (1), Doris RAUHUT (2), Konstantinos BAKASIETAS (3), Yiorgos KOTSERIDIS (1), Stamatina KALLITHRAKA (1)

(1) Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
(2) Hochshule Geisenheim University, Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim.
(3  Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth.

Contact the author

Keywords

mean polymerization degree, Xinomavro, proanthocyanidins, anthocyanins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What happens with the glutathione during winemaking and the storage of the wine?

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H).

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.