GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Characterization of different clone candidates of xinomavro according to their phenolic composition

Characterization of different clone candidates of xinomavro according to their phenolic composition

Abstract

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Material and methods ‐ Grapes were collected in vintage 2016, from an established Xinomavro vineyard, planted with the nine clones each one represented by fifty plants. The vineyard was established in 2011, with planted material selected according to the corresponding E.U. legislation for vine clone selection. Grapes were collected at harvest; general chemical analyses of each clone were recorded and the grapes were vinified under the same winemaking protocol and conditions. Monomeric anthocyanins, tannin mean degree of polymerization (mDP), galloylation percentage (%G), percentage of prodelphinidins (% P) and total tannin content, were determined in the produced wines by High Performance Liquid Chromatographer (HPLC) and spectrophotometer.

Results ‐ In most analyses performed an influence of clone selection was observed. Clones XE1, X19, X37, X35 and X31 differentiate from the clones evaluated in parameters crucial for wine quality such as maturity, acidity, anthocyanin, phenolic content and composition. It is therefore a step towards identifying clone characteristics dependent to the viticulture and winemaking needs. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Evelina IGGOUMENAKI (1, 2), Sofoklis PETROPOULOS (1), Doris RAUHUT (2), Konstantinos BAKASIETAS (3), Yiorgos KOTSERIDIS (1), Stamatina KALLITHRAKA (1)

(1) Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
(2) Hochshule Geisenheim University, Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim.
(3  Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth.

Contact the author

Keywords

mean polymerization degree, Xinomavro, proanthocyanidins, anthocyanins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

Les propriétés de réflectance du sol de la parcelle sont à considerer comme des paramètres du terroir

Suite à des expérimentations de solarisation artificielle réalisées en 1999 en conditions réelles de culture, à partir de matériels réfléchissants partiellement colorés en vert, en bleu

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia). For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures).

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.