GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Characterization of different clone candidates of xinomavro according to their phenolic composition

Characterization of different clone candidates of xinomavro according to their phenolic composition

Abstract

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Material and methods ‐ Grapes were collected in vintage 2016, from an established Xinomavro vineyard, planted with the nine clones each one represented by fifty plants. The vineyard was established in 2011, with planted material selected according to the corresponding E.U. legislation for vine clone selection. Grapes were collected at harvest; general chemical analyses of each clone were recorded and the grapes were vinified under the same winemaking protocol and conditions. Monomeric anthocyanins, tannin mean degree of polymerization (mDP), galloylation percentage (%G), percentage of prodelphinidins (% P) and total tannin content, were determined in the produced wines by High Performance Liquid Chromatographer (HPLC) and spectrophotometer.

Results ‐ In most analyses performed an influence of clone selection was observed. Clones XE1, X19, X37, X35 and X31 differentiate from the clones evaluated in parameters crucial for wine quality such as maturity, acidity, anthocyanin, phenolic content and composition. It is therefore a step towards identifying clone characteristics dependent to the viticulture and winemaking needs. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Evelina IGGOUMENAKI (1, 2), Sofoklis PETROPOULOS (1), Doris RAUHUT (2), Konstantinos BAKASIETAS (3), Yiorgos KOTSERIDIS (1), Stamatina KALLITHRAKA (1)

(1) Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
(2) Hochshule Geisenheim University, Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim.
(3  Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth.

Contact the author

Keywords

mean polymerization degree, Xinomavro, proanthocyanidins, anthocyanins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of soil characteristics on grape composition of Tempranillo variety under different weather conditions in Rioja DOCa (Spain)

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.