GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Characterization of different clone candidates of xinomavro according to their phenolic composition

Characterization of different clone candidates of xinomavro according to their phenolic composition

Abstract

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Material and methods ‐ Grapes were collected in vintage 2016, from an established Xinomavro vineyard, planted with the nine clones each one represented by fifty plants. The vineyard was established in 2011, with planted material selected according to the corresponding E.U. legislation for vine clone selection. Grapes were collected at harvest; general chemical analyses of each clone were recorded and the grapes were vinified under the same winemaking protocol and conditions. Monomeric anthocyanins, tannin mean degree of polymerization (mDP), galloylation percentage (%G), percentage of prodelphinidins (% P) and total tannin content, were determined in the produced wines by High Performance Liquid Chromatographer (HPLC) and spectrophotometer.

Results ‐ In most analyses performed an influence of clone selection was observed. Clones XE1, X19, X37, X35 and X31 differentiate from the clones evaluated in parameters crucial for wine quality such as maturity, acidity, anthocyanin, phenolic content and composition. It is therefore a step towards identifying clone characteristics dependent to the viticulture and winemaking needs. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Evelina IGGOUMENAKI (1, 2), Sofoklis PETROPOULOS (1), Doris RAUHUT (2), Konstantinos BAKASIETAS (3), Yiorgos KOTSERIDIS (1), Stamatina KALLITHRAKA (1)

(1) Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
(2) Hochshule Geisenheim University, Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366, Geisenheim.
(3  Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth.

Contact the author

Keywords

mean polymerization degree, Xinomavro, proanthocyanidins, anthocyanins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.