GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection


The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance.
Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique. Additionally, the molecular interactions of host, pathogen and EO, which underlie the efficiency of EOs, are not understood. The presented study aimed to a) evaluate whether a continuous fumigation of EO can control downy mildew and b) decipher molecular mechanisms triggered in host and pathogen by EO. A custom made climatic chamber was constructed, which enabled a continuous fumigation of vines with different EOs during long term experiments.
Several experiments were carried out with vine cuttings infected with Plasmopora viticola and subsequently exposed to continuous fumigation of different EOs with different concentrations and application times (24 h to 10 d). Experiments were stopped when infection symptoms were clearly present on the control. Physiological parameters (photosynthesis, growth rate) were recorded and leaves were sampled at different time points for subsequent RNA extraction.
The post-infection oregano oil vapor treatment during 24h was sufficient to reduce downy mildew development to 95%. Leaf RNA sampled after 24 hours and 10 days of EO treatment was used for RNA-seq analysis. Sequenced reads were mapped onto the Vitis vinifera and Plasmopora viticola genomes. Less than 1% of reads could be mapped onto the Plasmopora genome from treated samples, whereas up to 30 % reads mapped from the controls, thereby confirming visual observation of P. viticola absence under treatment. An average of 80 % reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated transcripts. Grapevine genes triggered by EO treatment were mainly linked to plant biotic stress response and plant-pathogen interactions. Key genes controlling ethylene synthesis, phenylpropanoids and flavonoid synthesis were also highly activated by EO. We report here for the first time the effects of EO treatments on the control of a grapevine pathogen, concomitantly with the molecular description of EO-host-pathogen interactions. These results strongly support the hypothesis that the antifungal efficiency of EO is indirect and mainly due to switching on resistance pathways of the host plants. These results are of major importance for the production and research on biopesticides, plant stimulation products as well as for resistance breeding strategies.


Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster


Markus RIENTH1*, Sana GHAFFARI1, Marylin CLÉROUX1, Arnaud PERNET1, Julien CROVADORE3, Eric REMOLIF2 Jean-Philipp BURDET1, Francois LEFORT3

1 Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 HEPIA, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Switzerland

Contact the author


plant defense, essential oil, Plasmopara viticola, grapevine


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.