GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Piloting grape ripening in a global warming scenario: feasible techniques are available

Piloting grape ripening in a global warming scenario: feasible techniques are available

Abstract

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Stefano PONI, Tommaso FRIONI, Matteo GATTI

DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza (Italy)

Contact the author

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Simulating berry sunburn in virtual vineyards

Context and purpose of the study. Berry sunburn in vineyards is a recurring disorder that can cause severe yield loss. As sunburn observations are often associated with heat waves, a link to climate change is likely.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Background: hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.)