GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 To what extent does vine balance actually drive fruit composition?

To what extent does vine balance actually drive fruit composition?

Abstract

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Material and methods – Field manipulations of vine balance were replicated in three contrasting viticultural regions of Australia, Hilltops, Murray Valley and Langhorne Creek, over three seasons. The manipulations were early defoliation (pre‐capfall), late defoliation (pre‐véraison) and 50% crop removal (pre‐véraison). Fruit were sampled prior to a treatment being applied and then at approximately two‐ week intervals until harvest, where small lot wines were made from each field replicate. The fruit samples were analysed for maturity, basic composition and the expression of key genes that regulate anthocyanin and tannin formation. In addition, the effect of defoliation was simulated, without changing bunch environment, by enclosing whole vines in chambers and supplying them with low CO2 air to reduce photosynthesis.

Results – Changing vine balance consistently altered the rate of ripening, but did not correlate with treatment effects on fruit composition, where they occurred. Late defoliation extended the maturation period, but reduced total anthocyanin content. Crop removal shortened the maturation period, but had little effect on the fruit. Interestingly, early defoliation had no clear effect on vine balance, but resulted in both increased anthocyanin and increased tannin content. The chamber experiment also extended the maturation period, but had no effect on the relationship between sugar and anthocyanins. Overall, there was no conclusive evidence that the changes in vine balance achieved had any significant effect on fruit or wine composition when fruit were harvested at the same sugar ripenesss. 

 

 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Everard J. EDWARDS (1), Jason SMITH (2,5), Amanda WALKER (1), Celia BARRIL (2,3), Annette BETTS(1), David FOSTER (2), Julia GOUOT (2), and Bruno HOLZAPFEL (2,4)

(1) CSIRO Agriculture, Locked Bag 2, Glen Osmond, SA 5064, Australia
(2) National Wine and Grape Industry Centre, Wagga Wagga, Australia
(3) School of Agricultural and Wine Sciences, Charles Sturt University Wagga Wagga, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, Australia
(5) Current address: Hochschule Geisenheim University, Germany

Contact the author

Keywords

maturation rate, vine balance, Vitis vinifera, wine composition

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.

Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.