GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 To what extent does vine balance actually drive fruit composition?

To what extent does vine balance actually drive fruit composition?

Abstract

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Material and methods – Field manipulations of vine balance were replicated in three contrasting viticultural regions of Australia, Hilltops, Murray Valley and Langhorne Creek, over three seasons. The manipulations were early defoliation (pre‐capfall), late defoliation (pre‐véraison) and 50% crop removal (pre‐véraison). Fruit were sampled prior to a treatment being applied and then at approximately two‐ week intervals until harvest, where small lot wines were made from each field replicate. The fruit samples were analysed for maturity, basic composition and the expression of key genes that regulate anthocyanin and tannin formation. In addition, the effect of defoliation was simulated, without changing bunch environment, by enclosing whole vines in chambers and supplying them with low CO2 air to reduce photosynthesis.

Results – Changing vine balance consistently altered the rate of ripening, but did not correlate with treatment effects on fruit composition, where they occurred. Late defoliation extended the maturation period, but reduced total anthocyanin content. Crop removal shortened the maturation period, but had little effect on the fruit. Interestingly, early defoliation had no clear effect on vine balance, but resulted in both increased anthocyanin and increased tannin content. The chamber experiment also extended the maturation period, but had no effect on the relationship between sugar and anthocyanins. Overall, there was no conclusive evidence that the changes in vine balance achieved had any significant effect on fruit or wine composition when fruit were harvested at the same sugar ripenesss. 

 

 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Everard J. EDWARDS (1), Jason SMITH (2,5), Amanda WALKER (1), Celia BARRIL (2,3), Annette BETTS(1), David FOSTER (2), Julia GOUOT (2), and Bruno HOLZAPFEL (2,4)

(1) CSIRO Agriculture, Locked Bag 2, Glen Osmond, SA 5064, Australia
(2) National Wine and Grape Industry Centre, Wagga Wagga, Australia
(3) School of Agricultural and Wine Sciences, Charles Sturt University Wagga Wagga, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, Australia
(5) Current address: Hochschule Geisenheim University, Germany

Contact the author

Keywords

maturation rate, vine balance, Vitis vinifera, wine composition

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Perceptions of livestock integration in South African vineyards

Context and purpose of the study. Conventional viticulture relies heavily on synthetic inputs (fertilizers, pesticides), as well as mechanization to manage pests, weeds, and diseases and maximize yields.