GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 To what extent does vine balance actually drive fruit composition?

To what extent does vine balance actually drive fruit composition?

Abstract

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Material and methods – Field manipulations of vine balance were replicated in three contrasting viticultural regions of Australia, Hilltops, Murray Valley and Langhorne Creek, over three seasons. The manipulations were early defoliation (pre‐capfall), late defoliation (pre‐véraison) and 50% crop removal (pre‐véraison). Fruit were sampled prior to a treatment being applied and then at approximately two‐ week intervals until harvest, where small lot wines were made from each field replicate. The fruit samples were analysed for maturity, basic composition and the expression of key genes that regulate anthocyanin and tannin formation. In addition, the effect of defoliation was simulated, without changing bunch environment, by enclosing whole vines in chambers and supplying them with low CO2 air to reduce photosynthesis.

Results – Changing vine balance consistently altered the rate of ripening, but did not correlate with treatment effects on fruit composition, where they occurred. Late defoliation extended the maturation period, but reduced total anthocyanin content. Crop removal shortened the maturation period, but had little effect on the fruit. Interestingly, early defoliation had no clear effect on vine balance, but resulted in both increased anthocyanin and increased tannin content. The chamber experiment also extended the maturation period, but had no effect on the relationship between sugar and anthocyanins. Overall, there was no conclusive evidence that the changes in vine balance achieved had any significant effect on fruit or wine composition when fruit were harvested at the same sugar ripenesss. 

 

 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Everard J. EDWARDS (1), Jason SMITH (2,5), Amanda WALKER (1), Celia BARRIL (2,3), Annette BETTS(1), David FOSTER (2), Julia GOUOT (2), and Bruno HOLZAPFEL (2,4)

(1) CSIRO Agriculture, Locked Bag 2, Glen Osmond, SA 5064, Australia
(2) National Wine and Grape Industry Centre, Wagga Wagga, Australia
(3) School of Agricultural and Wine Sciences, Charles Sturt University Wagga Wagga, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, Australia
(5) Current address: Hochschule Geisenheim University, Germany

Contact the author

Keywords

maturation rate, vine balance, Vitis vinifera, wine composition

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain