GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 To what extent does vine balance actually drive fruit composition?

To what extent does vine balance actually drive fruit composition?

Abstract

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Material and methods – Field manipulations of vine balance were replicated in three contrasting viticultural regions of Australia, Hilltops, Murray Valley and Langhorne Creek, over three seasons. The manipulations were early defoliation (pre‐capfall), late defoliation (pre‐véraison) and 50% crop removal (pre‐véraison). Fruit were sampled prior to a treatment being applied and then at approximately two‐ week intervals until harvest, where small lot wines were made from each field replicate. The fruit samples were analysed for maturity, basic composition and the expression of key genes that regulate anthocyanin and tannin formation. In addition, the effect of defoliation was simulated, without changing bunch environment, by enclosing whole vines in chambers and supplying them with low CO2 air to reduce photosynthesis.

Results – Changing vine balance consistently altered the rate of ripening, but did not correlate with treatment effects on fruit composition, where they occurred. Late defoliation extended the maturation period, but reduced total anthocyanin content. Crop removal shortened the maturation period, but had little effect on the fruit. Interestingly, early defoliation had no clear effect on vine balance, but resulted in both increased anthocyanin and increased tannin content. The chamber experiment also extended the maturation period, but had no effect on the relationship between sugar and anthocyanins. Overall, there was no conclusive evidence that the changes in vine balance achieved had any significant effect on fruit or wine composition when fruit were harvested at the same sugar ripenesss. 

 

 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Everard J. EDWARDS (1), Jason SMITH (2,5), Amanda WALKER (1), Celia BARRIL (2,3), Annette BETTS(1), David FOSTER (2), Julia GOUOT (2), and Bruno HOLZAPFEL (2,4)

(1) CSIRO Agriculture, Locked Bag 2, Glen Osmond, SA 5064, Australia
(2) National Wine and Grape Industry Centre, Wagga Wagga, Australia
(3) School of Agricultural and Wine Sciences, Charles Sturt University Wagga Wagga, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, Australia
(5) Current address: Hochschule Geisenheim University, Germany

Contact the author

Keywords

maturation rate, vine balance, Vitis vinifera, wine composition

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.