GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 To what extent does vine balance actually drive fruit composition?

To what extent does vine balance actually drive fruit composition?

Abstract

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Material and methods – Field manipulations of vine balance were replicated in three contrasting viticultural regions of Australia, Hilltops, Murray Valley and Langhorne Creek, over three seasons. The manipulations were early defoliation (pre‐capfall), late defoliation (pre‐véraison) and 50% crop removal (pre‐véraison). Fruit were sampled prior to a treatment being applied and then at approximately two‐ week intervals until harvest, where small lot wines were made from each field replicate. The fruit samples were analysed for maturity, basic composition and the expression of key genes that regulate anthocyanin and tannin formation. In addition, the effect of defoliation was simulated, without changing bunch environment, by enclosing whole vines in chambers and supplying them with low CO2 air to reduce photosynthesis.

Results – Changing vine balance consistently altered the rate of ripening, but did not correlate with treatment effects on fruit composition, where they occurred. Late defoliation extended the maturation period, but reduced total anthocyanin content. Crop removal shortened the maturation period, but had little effect on the fruit. Interestingly, early defoliation had no clear effect on vine balance, but resulted in both increased anthocyanin and increased tannin content. The chamber experiment also extended the maturation period, but had no effect on the relationship between sugar and anthocyanins. Overall, there was no conclusive evidence that the changes in vine balance achieved had any significant effect on fruit or wine composition when fruit were harvested at the same sugar ripenesss. 

 

 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Everard J. EDWARDS (1), Jason SMITH (2,5), Amanda WALKER (1), Celia BARRIL (2,3), Annette BETTS(1), David FOSTER (2), Julia GOUOT (2), and Bruno HOLZAPFEL (2,4)

(1) CSIRO Agriculture, Locked Bag 2, Glen Osmond, SA 5064, Australia
(2) National Wine and Grape Industry Centre, Wagga Wagga, Australia
(3) School of Agricultural and Wine Sciences, Charles Sturt University Wagga Wagga, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, Australia
(5) Current address: Hochschule Geisenheim University, Germany

Contact the author

Keywords

maturation rate, vine balance, Vitis vinifera, wine composition

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Sensorial characteristic of single variety red wines from four local variants of Tempranillo

It is well-known that there is a relationship between the “terroir” and the characteristics of grapes and quality of wines. However, adequate grape variety and other cultural factors should be also taken into account