GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Abstract

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Material and methods ‐ Two ED experiments were set up at a commercial vineyard located in the Lisbon winegrowing region with the varieties Aragonez, syn. Tempranillo (2013‐2015) and Semillon (2018). In both experiments the ED treatment was compared with the non‐defoliated (ND; control) using a randomized complete block design with 4 replicates per treatment. The ED treatment consisted of the removal of 5‐6 basal leaves and any laterals at pre‐flowering. Vegetative (leaf area and pruning weight) and reproductive components (%fruit‐set, cluster number, cluster weight, yield) and berry composition were assessed.

Results ‐ In the Aragonez experiment total leaf area at harvest and pruning weight were significantly lower in ED vines. The ED treatment presented also a significantly lower fruit‐set, berry weight, cluster weight and compactness, as well as yield as compared to the control. In the third season ED presented a significantly lower cluster number indicating a negative carry‐over effect on bud initiation induced by the early source limitation. Regarding berry composition, ED showed a higher Brix and a lower titratable acidity than the control but no significant differences were detected on skin anthocyanins. The incidence and severity of botrytis bunch rot infection was significantly higher in the control treatment. In the Semillon experiment the ED treatment showed also a significantly lower leaf area, fruit‐set, berry weight, cluster weight, cluster compactness and yield. No significant differences were detected on berry composition except for Brix where ED showed a significantly higher value. Despite the low pressure of botrytis bunch rot infection the control presented the significantly highest incidence and severity. An heat event occurred during the first week of August induced a severe and significantly higher berry sunburn in the ED treatment. Our results show that pre‐bloom defoliation is a canopy management practice with high potential for regulating grape yield and with benefits for grape health.However, in Mediterranean climates, where water and heat stress can inhibit leaf area compensation, the negative effects observed either on berry sunburn and on node fruitfulness recommends to use this practice with care or even avoid it. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Carlos M. LOPES (1), Marta VENDEIRO, Ricardo EGIPTO (1), Olfa ZARROUK (2), M. Manuela CHAVES (2)

(1) LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
(2) Instituto de Tecnologia Química e Biológica, Oeiras, Portugal

Contact the author

Keywords

early defoliation, fruit‐set, grapevine, botrytis rot, berry sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi. 

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal).