GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Is early defoliation a sustainable management practice for mediterranean vineyards? Case studies at the portuguese lisbon winegrowing region

Abstract

Context and purpose of the study ‐ Recently early defoliation (ED) has been tested in several high‐ yielding grapevine varieties and sites aiming at reducing cluster compactness and hence, regulating yield and susceptibility to botrytis bunch rot infection. The reported results have been generally positive, encouraging growers to use this canopy management technique as an alternative for replacing the conventional time‐consuming cluster thinning and, simultaneously, as a sustainable practice to reduce the use of fungicides. However, ED increases berry sunburn risks and/or can induce carry‐over effects on vigor and node fruitfulness as shown in the two case studies reported in this work.

Material and methods ‐ Two ED experiments were set up at a commercial vineyard located in the Lisbon winegrowing region with the varieties Aragonez, syn. Tempranillo (2013‐2015) and Semillon (2018). In both experiments the ED treatment was compared with the non‐defoliated (ND; control) using a randomized complete block design with 4 replicates per treatment. The ED treatment consisted of the removal of 5‐6 basal leaves and any laterals at pre‐flowering. Vegetative (leaf area and pruning weight) and reproductive components (%fruit‐set, cluster number, cluster weight, yield) and berry composition were assessed.

Results ‐ In the Aragonez experiment total leaf area at harvest and pruning weight were significantly lower in ED vines. The ED treatment presented also a significantly lower fruit‐set, berry weight, cluster weight and compactness, as well as yield as compared to the control. In the third season ED presented a significantly lower cluster number indicating a negative carry‐over effect on bud initiation induced by the early source limitation. Regarding berry composition, ED showed a higher Brix and a lower titratable acidity than the control but no significant differences were detected on skin anthocyanins. The incidence and severity of botrytis bunch rot infection was significantly higher in the control treatment. In the Semillon experiment the ED treatment showed also a significantly lower leaf area, fruit‐set, berry weight, cluster weight, cluster compactness and yield. No significant differences were detected on berry composition except for Brix where ED showed a significantly higher value. Despite the low pressure of botrytis bunch rot infection the control presented the significantly highest incidence and severity. An heat event occurred during the first week of August induced a severe and significantly higher berry sunburn in the ED treatment. Our results show that pre‐bloom defoliation is a canopy management practice with high potential for regulating grape yield and with benefits for grape health.However, in Mediterranean climates, where water and heat stress can inhibit leaf area compensation, the negative effects observed either on berry sunburn and on node fruitfulness recommends to use this practice with care or even avoid it. 

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Carlos M. LOPES (1), Marta VENDEIRO, Ricardo EGIPTO (1), Olfa ZARROUK (2), M. Manuela CHAVES (2)

(1) LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
(2) Instituto de Tecnologia Química e Biológica, Oeiras, Portugal

Contact the author

Keywords

early defoliation, fruit‐set, grapevine, botrytis rot, berry sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Integration of wine cultivation history for characterizing the terroirs of Côte d’Or (Burgundy, France)

Les aires d’appellations de la Côte d’Or résultent d’une sélection humaine empirique, historique et évolutive en adéquation avec les facteurs naturels. Afin de comprendre quels facteurs naturels et humains agissent sur le caractère et l’évolution des terroirs des Côtes de Nuits et de Beaune, une méthodologie de recherche a été développée. Elle s’articule autour de deux axes, la caractérisation physique des lieux-dits viticoles et l’historicité de la qualité de ces lieux-dits. Le travail avec un S.I.G permet d’étudier l’évolution spatiale et temporelle de la qualité.