GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Late leaf removal does not consistently delay ripeningin semillon in Australia

Late leaf removal does not consistently delay ripeningin semillon in Australia

Abstract

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Material and methods ‐ The study was carried out for four consecutive seasons starting in 2015 in the variety Semillon at the Waite Campus, University of Adelaide, Australia. Yield, yield components and berry chemistry (total soluble solids, titratable acidity, pH and total phenolics) were all assessed during the study.


Results
‐ Results showed that despite the removal of up to 30% of the vine’s canopy, the technique was effective in delaying ripening only in one of the four seasons. No differences were observed in yield components and berry and wine chemistry between the treated and untreated vines. These results suggest that the technique might not be a feasible strategy to delay ripening in Semillon grown in a hot climate in Australia.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Roberta DE BEI (1), Xiaoyi WANG (1), Lukas PAPAGIANNIS (1), Massimiliano COCCO (1,3), Patrick O’BRIEN (1), Marco ZITO (1,4), Jingyun OUYANG (1), Sigfredo FUENTES (5), Matthew GILLIHAM (1,2), Steve TYERMAN (1,2) and Cassandra COLLINS (1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia
(3) The University of Sassari, Department of Agriculture, Viale Italia 39, 07100, Sassari, Italy
(4) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(5) The University of Melbourne, Faculty of Veterinary and Agricultural Sciences. Parkville, 3010. Victoria, Australia

Contact the author

Keywords

Leaf removal, delayed ripening, canopy management, leaf area, Semillon

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Les outils pour favoriser le renouvellement des générations en viticulture

French lawmakers have chosen the family-type winegrowing business as the benchmark for drafting the legal framework for winegrowing businesses and winegrowers. In france (source: msa), in 2022, there were 1,444 new winegrowers, an increase of 3% compared with 2021, representing 10% of new farm managers. The retention rate for winegrowers is 75% (up 13% on 2021), compared with 77% for all agricultural sectors (stable).

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.