GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Late leaf removal does not consistently delay ripeningin semillon in Australia

Late leaf removal does not consistently delay ripeningin semillon in Australia

Abstract

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Material and methods ‐ The study was carried out for four consecutive seasons starting in 2015 in the variety Semillon at the Waite Campus, University of Adelaide, Australia. Yield, yield components and berry chemistry (total soluble solids, titratable acidity, pH and total phenolics) were all assessed during the study.


Results
‐ Results showed that despite the removal of up to 30% of the vine’s canopy, the technique was effective in delaying ripening only in one of the four seasons. No differences were observed in yield components and berry and wine chemistry between the treated and untreated vines. These results suggest that the technique might not be a feasible strategy to delay ripening in Semillon grown in a hot climate in Australia.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Roberta DE BEI (1), Xiaoyi WANG (1), Lukas PAPAGIANNIS (1), Massimiliano COCCO (1,3), Patrick O’BRIEN (1), Marco ZITO (1,4), Jingyun OUYANG (1), Sigfredo FUENTES (5), Matthew GILLIHAM (1,2), Steve TYERMAN (1,2) and Cassandra COLLINS (1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia
(3) The University of Sassari, Department of Agriculture, Viale Italia 39, 07100, Sassari, Italy
(4) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(5) The University of Melbourne, Faculty of Veterinary and Agricultural Sciences. Parkville, 3010. Victoria, Australia

Contact the author

Keywords

Leaf removal, delayed ripening, canopy management, leaf area, Semillon

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

Application of uv-led in wine as an alternative to sulphur dioxide

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011).