GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Abstract

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

Material and methods – We performed a field experiment with 7‐year‐old Cabernet Sauvignon grafted on 110R (Vitis berlandieri × Vitis rupestris) rootstock. A factorial design with leaf removal timing (pre‐ bloom and post‐fruit set, compared to an untreated control) and applied water amounts (1.0, 0.5 and 0.25 of crop evapotranspiration replacement (ETc)) was used. We measured plant water status, leaf gas exchange, primary and secondary metabolites in response to treatments.

Results – Stem water potential was lower in the 0.25 ETc regardless of leaf removal treatments. A 40% reduction in net carbon assimilation was evident in the 0.25 ETc treatments, as well. Likewise stomatal conductance was lower with 0.25 ETc. Leaf removal timing did not affect leaf gas exchanges. There was no effect of leaf removal on components of yield, including the number of berries set. The 0.25 ETc treatment reduced berry mass and yield, but 0.5 and 1.0 ETc treatments were not different from each other. Stem water potential integrals were well related to speed of total soluble solids accumulation. There was a significant interaction of leaf removal and irrigation on pruning weight and Ravaz Index. Reducing the irrigation resulted in a significant increase of anthocyanin concentration; however, there was no increase in its biosynthesis. The ratio of 3’4’5‐OH to 3’4’‐OH anthocyanins was greater with 0.25 and 0.50 ETc compared to 1.0 ETc. Leaf removal affected flavonol content, specifically kaempferol‐3‐o‐ glucoside concentration well as its content a per berry basis which was greater with leaf removal regardless of its timing. Berry skin proanthocyanidins in either concentration or content, or mean degree of polymerization were not affected by treatments applied. Clear skies and longer periods with minimal precipitation paired with reduction in irrigation had a stronger influence on berry chemistry than leaf removal application. Our results indicated that cluster microclimate without leaf removal was already optimized within the confines of this study. Although not as impactful, there still appears to be potential for understanding leaf removal influence on berry physiology and its effect on vine balance in premium regions.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Johann MARTíNEZ‐LUSCHER (1) , Constance Cunty (2), Luca BRILLANTE (3), Runze Yu (1), Gregory Gambetta (2), S. Kaan KURTURAL (1)

(1) Univeristy of California Davis 1 Shields Ave. Davis, CA 95616 USA
(2) UMR EGFV ISVV, 210 Chemin de Leysotte – CS 50008 33882 Villenave d’Ornon Cedex, France
(3) California State University Fresno 2360 E. Barstow Ave. Fresno, CA 93704 USA

Contact the author

Keywords

anthocyanins, flavonol, carbon assimilation, canopy management, proanthocyanidins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.