GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Abstract

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

Material and methods – We performed a field experiment with 7‐year‐old Cabernet Sauvignon grafted on 110R (Vitis berlandieri × Vitis rupestris) rootstock. A factorial design with leaf removal timing (pre‐ bloom and post‐fruit set, compared to an untreated control) and applied water amounts (1.0, 0.5 and 0.25 of crop evapotranspiration replacement (ETc)) was used. We measured plant water status, leaf gas exchange, primary and secondary metabolites in response to treatments.

Results – Stem water potential was lower in the 0.25 ETc regardless of leaf removal treatments. A 40% reduction in net carbon assimilation was evident in the 0.25 ETc treatments, as well. Likewise stomatal conductance was lower with 0.25 ETc. Leaf removal timing did not affect leaf gas exchanges. There was no effect of leaf removal on components of yield, including the number of berries set. The 0.25 ETc treatment reduced berry mass and yield, but 0.5 and 1.0 ETc treatments were not different from each other. Stem water potential integrals were well related to speed of total soluble solids accumulation. There was a significant interaction of leaf removal and irrigation on pruning weight and Ravaz Index. Reducing the irrigation resulted in a significant increase of anthocyanin concentration; however, there was no increase in its biosynthesis. The ratio of 3’4’5‐OH to 3’4’‐OH anthocyanins was greater with 0.25 and 0.50 ETc compared to 1.0 ETc. Leaf removal affected flavonol content, specifically kaempferol‐3‐o‐ glucoside concentration well as its content a per berry basis which was greater with leaf removal regardless of its timing. Berry skin proanthocyanidins in either concentration or content, or mean degree of polymerization were not affected by treatments applied. Clear skies and longer periods with minimal precipitation paired with reduction in irrigation had a stronger influence on berry chemistry than leaf removal application. Our results indicated that cluster microclimate without leaf removal was already optimized within the confines of this study. Although not as impactful, there still appears to be potential for understanding leaf removal influence on berry physiology and its effect on vine balance in premium regions.

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Johann MARTíNEZ‐LUSCHER (1) , Constance Cunty (2), Luca BRILLANTE (3), Runze Yu (1), Gregory Gambetta (2), S. Kaan KURTURAL (1)

(1) Univeristy of California Davis 1 Shields Ave. Davis, CA 95616 USA
(2) UMR EGFV ISVV, 210 Chemin de Leysotte – CS 50008 33882 Villenave d’Ornon Cedex, France
(3) California State University Fresno 2360 E. Barstow Ave. Fresno, CA 93704 USA

Contact the author

Keywords

anthocyanins, flavonol, carbon assimilation, canopy management, proanthocyanidins

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.

Evaluation of consumer behaviour, acceptance and willingness to return of faulty wines

The analysis of consumer attitudes towards wine, especially towards wines perceived as faulty, is an aspect that requires more research than has been carried out so far [1]. This study aims to analyse consumer behaviour in situations involving the consumption of faulty wines and to assess the level of acceptance of such wines.