GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Abstract

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.

Material and methods – To obtain Amarone wine, Corvina grapes before vinification has to be stored in dehydrating room in order to achieve at least the 30% weight loss. In our experiment (2016/17) we harvested Corvina grapes from the same vineyards but before vinification we used two different withering conditions: i) room with natural air movement forced by opening the windows mainly during the day and ii) room equipped with mechanical air movement system (fans) and air humidity artificial control (around or below 70/75%). In both conditions grape has been left since their 30% weigh loss. Berry macro-composition (sugar, acids, pH) and micro-composition (total polyphenols, anthocyanins, stilbenes, aroma compounds) has been detected for the two grapes postharvest management and the two vinification has been done too.

Results – The healthy berries status did not signed any differences. In artificial conditions grape lost 30% weigh 15/25 days before the natural ones, sugar enrichment was not strictly linked with the water loss, but it was more related with the withering conditions and ripeness stage at harvest. Anthocyanins skin content resulted higher or slightly higher in natural conditions but anthocyanin extractability are equal. Stilbenes compound (trans resveratrol, trans piceide, δ viniferina, etc) are higher in grapes dried in artificial conditions. This latter result could be linked to less stress responses that natural condition impose to berry cells. The total aromatic compounds resulted more pronounced in grapes dried in natural conditions; the single chemical compounds that resulted in higher quantity were: nerolo, geraniolo, 3-OH-β-damascenone, vomifoliolo, guaiacolo, metilsalicilato, alcolbenzilico, eugenolo, acetovanillone. The differences were clearly in favour of natural withering system especially in 2015 and 2017. In terms of wine sensory profile the wine obtained with grape dehydrated in natural room has been preferred for its higher pronounced body and structure, for its spices, fresh and ripe red fruit flavour. The results underline that postharvest dehydration conditions have a significant impact on general bunch metabolism and even if the water loss increases the solute concentration, physiological and biochemical processes may affect berry composition and wine character under different dehydrating choices.  

DOI:

Publication date: June 19, 2020

Issue: GIESCO 2019

Type: Article

Authors

Diego TOMASI (1), L. LOVAT (1), T. NARDI (1), A. LONARDI (2)

(1) CREA-VE, via XXVIII Aprile, 26 – 31015 Conegliano (TV) Italy
(2) BERTANIDOMAINS, Via Asiago, 1 – 37023 Grezzana (VR) Italy

Contact the author

Keywords

Grapevine, Corvina, Dehydration, Amarone

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.