terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sensory profile of wines obtained from disease-resistant varieties in La Rioja

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

Abstract

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.

In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

The sensory profile of the wines was obtained by sorting task carried out with 25 wine experts. All microvinifications were presented together with reference varieties* (Sauvignon Blanc and Friuliano for whites and Merlot, Cabernet Sauvignon and Regent for reds). Results showed a very diverse sensorial space, which could be compared with the references. A clustering of the reference varieties with some of the wines elaborated with the studied disease-resistant varieties confirms shared sensory profiles. The results will shed light on the viability of disease-resistant varieties within the DOCa Rioja in the near future.

Acknowledgements: This work has been funded by the Government of La Rioja, through project Fortalece 2021/08. The collaboration of the staff at CIDA and ICVV winery is gratefully acknowledged.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Sara I. Blanco González*, M. Pilar Sáenz-Navajas, Carolina Castillo, María M. Hernández, and Cristina M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (GR-CSIC-UR)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWIS, powdery mildew, downy mildew, sustainable viticulture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.