Macrowine 2021
IVES 9 IVES Conference Series 9 An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Abstract

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration. Two factors, canopy height with two levels (90 and 140 cm), and crop load with two levels (§§5 and 10 clusters per vine), were combined in a split plot trial (5 vines per treatment). All treatments received 20 kg/ha of 15N-labelled foliar urea (10 atom% 15N) at veraison. An extra 5-vine control treatment (150-cm canopy and 5 bunches per vine) received no foliar urea. As a result, the leaf-fruit ratio had a strong impact on the grape maturity at harvest and on the labelled-N partitioning after urea application. The YAN varied from 143 ± 17 mg/L when the leaf-fruit ratio was 1.6 m2/kg (light-exposed leaf area / fruit quantity), up to 230 ± 25 mg/L when the leaf-fruit ratio was 0.4 m2/kg. The grapes were the strongest sink of all the vine organs, with more than 20 % of their total organic N originating from the urea treatment. Whereas a too small leaf-fruit ratio affected the grape maturity and the accumulation of labelled N in the reserve organs, a large canopy induced a diminution of the total N concentration (% dry weight) in all organs comparable to a “dilution” in the plant. Thus a balanced leaf-fruit ratio – between 1 and 1.5 m2/kg – should be maintained in order to guarantee the grape maturity, the accumulation of YAN in the must and the storage of N in the reserve organs. This study fosters further research at the isotopic molecular level to unravel other mechanisms controlling the source-sink relationship and the specific N partitioning between grapevine organs.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Thibaut Verdenal* 

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.