Macrowine 2021
IVES 9 IVES Conference Series 9 An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Abstract

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration. Two factors, canopy height with two levels (90 and 140 cm), and crop load with two levels (§§5 and 10 clusters per vine), were combined in a split plot trial (5 vines per treatment). All treatments received 20 kg/ha of 15N-labelled foliar urea (10 atom% 15N) at veraison. An extra 5-vine control treatment (150-cm canopy and 5 bunches per vine) received no foliar urea. As a result, the leaf-fruit ratio had a strong impact on the grape maturity at harvest and on the labelled-N partitioning after urea application. The YAN varied from 143 ± 17 mg/L when the leaf-fruit ratio was 1.6 m2/kg (light-exposed leaf area / fruit quantity), up to 230 ± 25 mg/L when the leaf-fruit ratio was 0.4 m2/kg. The grapes were the strongest sink of all the vine organs, with more than 20 % of their total organic N originating from the urea treatment. Whereas a too small leaf-fruit ratio affected the grape maturity and the accumulation of labelled N in the reserve organs, a large canopy induced a diminution of the total N concentration (% dry weight) in all organs comparable to a “dilution” in the plant. Thus a balanced leaf-fruit ratio – between 1 and 1.5 m2/kg – should be maintained in order to guarantee the grape maturity, the accumulation of YAN in the must and the storage of N in the reserve organs. This study fosters further research at the isotopic molecular level to unravel other mechanisms controlling the source-sink relationship and the specific N partitioning between grapevine organs.

Publication date: April 4, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Thibaut Verdenal* 

*Agroscope

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.