Macrowine 2021
IVES 9 IVES Conference Series 9 How pressing techniques affect must composition and wine quality of Pinot blanc

How pressing techniques affect must composition and wine quality of Pinot blanc

Abstract

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each. Treatments were composed as follows: (1) “classic”, pre-installed press program with 120 minutes and crumbling after each pressure step, (2) “cremant”, gentle and sequential press program with 180 minutes and fewer crumbling steps (3) “maceration” consisted of a 120 minutes cold soak followed by a very quick press program of 30 minutes and (4) “long pressing” consisted of a two hours maceration during the press program once the free run juice was drained. To track the evolution and extraction kinetics of pH, total acidity, tartaric acid, malic acid, total polyphenols and catechins, juice samples were taken after each cycle and analyzed right away in the laboratory. At approximately 150 kPa pressure the must is divided in fraction one and fraction two what corresponds to the press-wine. Two experimental wines are made out of each batch of grapes: one contains only must from the first fraction, and the other is a combination of fraction one and two in the original proportion. Sensory evaluation took place 6 and 18 months after harvest. Chemical must composition depends on the processing technique in the winery. Total acidity, pH, malic acid and polyphenol content of the must are affected from the chosen press program. Nonetheless the absolute content of the chemical components is different for the different pressing techniques; the trend of the extraction of these must components remains more or less the same during the pressing procedure. An exception was potassium, which showed a different behaviour in the “cremant” press-program. The different pressing techniques had an impact on the sensory profile of the wines. In the aroma profile, wines from the maceration treatment were marked best; whereas for the mouth-feel parameters the control wines achieved slightly better marks. Wines pressed with the “cremant” program were described as less complex, thinner and more acidity driven. Wines from treatment “long pressing” were reductive, less fruity ending up with a low overall quality. Two hours maceration followed by quick pressing showed interesting results. This might be a promising option to save press-capacity and to process more fruit in the short period of harvest. Further, for overall wine quality it was beneficial to use the entire must; wines made without the press-fraction are described as too light, not as complex and not as typical.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.