Macrowine 2021
IVES 9 IVES Conference Series 9 How pressing techniques affect must composition and wine quality of Pinot blanc

How pressing techniques affect must composition and wine quality of Pinot blanc

Abstract

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each. Treatments were composed as follows: (1) “classic”, pre-installed press program with 120 minutes and crumbling after each pressure step, (2) “cremant”, gentle and sequential press program with 180 minutes and fewer crumbling steps (3) “maceration” consisted of a 120 minutes cold soak followed by a very quick press program of 30 minutes and (4) “long pressing” consisted of a two hours maceration during the press program once the free run juice was drained. To track the evolution and extraction kinetics of pH, total acidity, tartaric acid, malic acid, total polyphenols and catechins, juice samples were taken after each cycle and analyzed right away in the laboratory. At approximately 150 kPa pressure the must is divided in fraction one and fraction two what corresponds to the press-wine. Two experimental wines are made out of each batch of grapes: one contains only must from the first fraction, and the other is a combination of fraction one and two in the original proportion. Sensory evaluation took place 6 and 18 months after harvest. Chemical must composition depends on the processing technique in the winery. Total acidity, pH, malic acid and polyphenol content of the must are affected from the chosen press program. Nonetheless the absolute content of the chemical components is different for the different pressing techniques; the trend of the extraction of these must components remains more or less the same during the pressing procedure. An exception was potassium, which showed a different behaviour in the “cremant” press-program. The different pressing techniques had an impact on the sensory profile of the wines. In the aroma profile, wines from the maceration treatment were marked best; whereas for the mouth-feel parameters the control wines achieved slightly better marks. Wines pressed with the “cremant” program were described as less complex, thinner and more acidity driven. Wines from treatment “long pressing” were reductive, less fruity ending up with a low overall quality. Two hours maceration followed by quick pressing showed interesting results. This might be a promising option to save press-capacity and to process more fruit in the short period of harvest. Further, for overall wine quality it was beneficial to use the entire must; wines made without the press-fraction are described as too light, not as complex and not as typical.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.