Macrowine 2021
IVES 9 IVES Conference Series 9 How pressing techniques affect must composition and wine quality of Pinot blanc

How pressing techniques affect must composition and wine quality of Pinot blanc

Abstract

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each. Treatments were composed as follows: (1) “classic”, pre-installed press program with 120 minutes and crumbling after each pressure step, (2) “cremant”, gentle and sequential press program with 180 minutes and fewer crumbling steps (3) “maceration” consisted of a 120 minutes cold soak followed by a very quick press program of 30 minutes and (4) “long pressing” consisted of a two hours maceration during the press program once the free run juice was drained. To track the evolution and extraction kinetics of pH, total acidity, tartaric acid, malic acid, total polyphenols and catechins, juice samples were taken after each cycle and analyzed right away in the laboratory. At approximately 150 kPa pressure the must is divided in fraction one and fraction two what corresponds to the press-wine. Two experimental wines are made out of each batch of grapes: one contains only must from the first fraction, and the other is a combination of fraction one and two in the original proportion. Sensory evaluation took place 6 and 18 months after harvest. Chemical must composition depends on the processing technique in the winery. Total acidity, pH, malic acid and polyphenol content of the must are affected from the chosen press program. Nonetheless the absolute content of the chemical components is different for the different pressing techniques; the trend of the extraction of these must components remains more or less the same during the pressing procedure. An exception was potassium, which showed a different behaviour in the “cremant” press-program. The different pressing techniques had an impact on the sensory profile of the wines. In the aroma profile, wines from the maceration treatment were marked best; whereas for the mouth-feel parameters the control wines achieved slightly better marks. Wines pressed with the “cremant” program were described as less complex, thinner and more acidity driven. Wines from treatment “long pressing” were reductive, less fruity ending up with a low overall quality. Two hours maceration followed by quick pressing showed interesting results. This might be a promising option to save press-capacity and to process more fruit in the short period of harvest. Further, for overall wine quality it was beneficial to use the entire must; wines made without the press-fraction are described as too light, not as complex and not as typical.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).