Macrowine 2021
IVES 9 IVES Conference Series 9 How pressing techniques affect must composition and wine quality of Pinot blanc

How pressing techniques affect must composition and wine quality of Pinot blanc

Abstract

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each. Treatments were composed as follows: (1) “classic”, pre-installed press program with 120 minutes and crumbling after each pressure step, (2) “cremant”, gentle and sequential press program with 180 minutes and fewer crumbling steps (3) “maceration” consisted of a 120 minutes cold soak followed by a very quick press program of 30 minutes and (4) “long pressing” consisted of a two hours maceration during the press program once the free run juice was drained. To track the evolution and extraction kinetics of pH, total acidity, tartaric acid, malic acid, total polyphenols and catechins, juice samples were taken after each cycle and analyzed right away in the laboratory. At approximately 150 kPa pressure the must is divided in fraction one and fraction two what corresponds to the press-wine. Two experimental wines are made out of each batch of grapes: one contains only must from the first fraction, and the other is a combination of fraction one and two in the original proportion. Sensory evaluation took place 6 and 18 months after harvest. Chemical must composition depends on the processing technique in the winery. Total acidity, pH, malic acid and polyphenol content of the must are affected from the chosen press program. Nonetheless the absolute content of the chemical components is different for the different pressing techniques; the trend of the extraction of these must components remains more or less the same during the pressing procedure. An exception was potassium, which showed a different behaviour in the “cremant” press-program. The different pressing techniques had an impact on the sensory profile of the wines. In the aroma profile, wines from the maceration treatment were marked best; whereas for the mouth-feel parameters the control wines achieved slightly better marks. Wines pressed with the “cremant” program were described as less complex, thinner and more acidity driven. Wines from treatment “long pressing” were reductive, less fruity ending up with a low overall quality. Two hours maceration followed by quick pressing showed interesting results. This might be a promising option to save press-capacity and to process more fruit in the short period of harvest. Further, for overall wine quality it was beneficial to use the entire must; wines made without the press-fraction are described as too light, not as complex and not as typical.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Konrad Pixner*

*Laimburg

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.