Macrowine 2021
IVES 9 IVES Conference Series 9 Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

Abstract

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life. The main goal of this research was to identify key aroma compounds involved in “overripened” red wines with an intense prune, cooked fruit aroma. Gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS) was used in order to find odorant zones (OZ) and identify volatile compounds responsible for the cooked fruit aroma in Merlot and Cabernet Sauvignon (CS) grapes. As a result, several OZ of cooked fruits were highlighted and identified by GC-MS. The analysis of many musts and wines marked or not by dried fruit flavors showed that furaneol (caramel), γ-nonalactone (coconut, cooked peach) and (Z)-1,5-octadien-3-one (geranium) play a role in this aroma. Furaneol and γ-nonalactone are well-known compounds in wines. On the contrary, the influence of (Z)-1,5-octadien-3-one is reported for the first time in musts from healthy grapes. A first quantification method of this ketone using SPME-GC-CI-MS was also validated in terms of repeatability, linearity and limits of detection. Perception thresholds in model solution were determined: 0.0022 ng/L in model solution of must, 9 ng/L in Merlot must and 1.2 ng/L in wine model solution. This compound, which is reminiscent of geranium, is extremely intense. Its quantification was performed in musts marked or not by dried fruit flavors. Its concentration in musts marked by these flavors can reach 80 ng/L. The correlation between the concentration of these compounds including (Z)-1,5-octadien-3-one, furaneol and γ-nonalactone and their sensory analysis is described. The details of this study and the consequences of the level and distribution of these compounds in musts and wines on the determination of factors (harvest date, light, vine) associated with their formation are also presented.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Allamy Lucile*, Darriet Philippe, Pons Alexandre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.