Macrowine 2021
IVES &#x39; IVES Conference Series &#x39; The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Abstract

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX. Moreover, D254 resulted in higher total volatile compounds than the other yeasts except GRE. For Beimei, D254 had no different influences to wine quality from the other yeasts. After tasting, the Beihong and beimei wines by D254 were evaluated best. Therefore, D254 is a suitable yeast for making Beihong and Beimei dry wines. Beihong and Beimei berries usually ripe in September 20 th in Beijing. We investigated the effect of different harvest times (September 20 th, 28 th, October 4 th, 11 th, 18 th) on wine quality of Beihong and Beimei. The ranges of soluble solid content in berries of Beihong and Beimei were about 25%-27% and 24%-26% respectively. From September 20th, total anthocyanin and resveratrol contents gradually increase until October 11, then slightly decreased to October 18. During the harvest time, these compounds content in Beihong than in Beimei, however, these two wines had no difference in malic acid or tartaric acid content. Among different harvest time, these both wines kept relative stable malic acid and tartaric acid. After tasting, the evaluation to Beihong and Beimei dry wines from berries in September 28, October 4 th and 11 th was better. Therefore, these three harvest times should be satisfy making Beihong and Beimei dry wine in Beijing, October 11 should be the best harvest time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Lijun Wang*, Demei Li, Wei Duan, Yangfu Kuang

*Chinese Academy of Sciences

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).