Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Abstract

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX. Moreover, D254 resulted in higher total volatile compounds than the other yeasts except GRE. For Beimei, D254 had no different influences to wine quality from the other yeasts. After tasting, the Beihong and beimei wines by D254 were evaluated best. Therefore, D254 is a suitable yeast for making Beihong and Beimei dry wines. Beihong and Beimei berries usually ripe in September 20 th in Beijing. We investigated the effect of different harvest times (September 20 th, 28 th, October 4 th, 11 th, 18 th) on wine quality of Beihong and Beimei. The ranges of soluble solid content in berries of Beihong and Beimei were about 25%-27% and 24%-26% respectively. From September 20th, total anthocyanin and resveratrol contents gradually increase until October 11, then slightly decreased to October 18. During the harvest time, these compounds content in Beihong than in Beimei, however, these two wines had no difference in malic acid or tartaric acid content. Among different harvest time, these both wines kept relative stable malic acid and tartaric acid. After tasting, the evaluation to Beihong and Beimei dry wines from berries in September 28, October 4 th and 11 th was better. Therefore, these three harvest times should be satisfy making Beihong and Beimei dry wine in Beijing, October 11 should be the best harvest time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Lijun Wang*, Demei Li, Wei Duan, Yangfu Kuang

*Chinese Academy of Sciences

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.