Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Abstract

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX. Moreover, D254 resulted in higher total volatile compounds than the other yeasts except GRE. For Beimei, D254 had no different influences to wine quality from the other yeasts. After tasting, the Beihong and beimei wines by D254 were evaluated best. Therefore, D254 is a suitable yeast for making Beihong and Beimei dry wines. Beihong and Beimei berries usually ripe in September 20 th in Beijing. We investigated the effect of different harvest times (September 20 th, 28 th, October 4 th, 11 th, 18 th) on wine quality of Beihong and Beimei. The ranges of soluble solid content in berries of Beihong and Beimei were about 25%-27% and 24%-26% respectively. From September 20th, total anthocyanin and resveratrol contents gradually increase until October 11, then slightly decreased to October 18. During the harvest time, these compounds content in Beihong than in Beimei, however, these two wines had no difference in malic acid or tartaric acid content. Among different harvest time, these both wines kept relative stable malic acid and tartaric acid. After tasting, the evaluation to Beihong and Beimei dry wines from berries in September 28, October 4 th and 11 th was better. Therefore, these three harvest times should be satisfy making Beihong and Beimei dry wine in Beijing, October 11 should be the best harvest time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Lijun Wang*, Demei Li, Wei Duan, Yangfu Kuang

*Chinese Academy of Sciences

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.