GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sustainable yield management through fruitfulness and bunch architecture manipulation

Sustainable yield management through fruitfulness and bunch architecture manipulation

Abstract

Context and purpose of the study ‐ Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures and sunny days during bud initiation generally result in high yields in the next season while cold periods during flowering and fruitset can reduce yield. As such, this variation in yield and potentially quality is difficult to predict and therefore manage. Early and more accurate assessments of fruitfulness and bunch architecture may improve these predictions. Vineyard management can be used to manage this variation and limit negative impacts on production. This study summarises research that; (1) investigated different methods for the assessment of bud fertility and bunch architecture and (2) assessed the impact of different management techniques on fruitfulness, bunch architecture and resultant yield.

Material and methods – Vineyard management trials were carried out in South‐eastern Australia during the last 4 years and were performed on Syrah, Cabernet Sauvignon, Semillon, Riesling, Grenache, Tempranillo, Merlot and Sauvignon Blanc. Management strategies investigated include; winter pruning, shoot thinning, shoot leaf removal, and bunch thinning. Bud dissection and image analysis was used to assess bud fertility and the size of inflorescence primordia. Image analysis during the growing season and at harvest was used to assess bunch architecture and bunch volume. Bunch weight and yield were determined at harvest to assess yield performance and validate early predictions.

Results – Bud dissection using image analysis was an effective method for early prediction of fruitfulness and bunch weight (R2=0.79). Similarly, assessing bunch volume at veraison correlated with bunch weight 2 at harvest (R =0.78). Assessment methods used in these studies have the potential to be used commercially for yield prediction and management. Management strategies applied in different experimental trials varied in their impact on both bud fertility and bunch architecture (in the current and future seasons). Not surprisingly, timing, extent of application as well as variety had an impact on the final outcome. Understanding how different vineyard management approaches can manipulate components of yield can help producers to manage their vineyards to desired yield and quality outcomes. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cassandra COLLINS (1), Xiaoyi Wang (1), Marco ZITO (1,2), Jingyun OUYANG (1), Annette JAMES(1), Roberta DE BEI (1), Catherine KIDMAN (1,3), Peter DRY(1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(3) Wynns Coonawarra Estate, PO Box 319 Coonawarra, South Australia 5263, Australia

Contact the author

Keywords

bunch architecture, canopy management, bud fertility, fruitset, yield management

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].