GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sustainable yield management through fruitfulness and bunch architecture manipulation

Sustainable yield management through fruitfulness and bunch architecture manipulation

Abstract

Context and purpose of the study ‐ Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures and sunny days during bud initiation generally result in high yields in the next season while cold periods during flowering and fruitset can reduce yield. As such, this variation in yield and potentially quality is difficult to predict and therefore manage. Early and more accurate assessments of fruitfulness and bunch architecture may improve these predictions. Vineyard management can be used to manage this variation and limit negative impacts on production. This study summarises research that; (1) investigated different methods for the assessment of bud fertility and bunch architecture and (2) assessed the impact of different management techniques on fruitfulness, bunch architecture and resultant yield.

Material and methods – Vineyard management trials were carried out in South‐eastern Australia during the last 4 years and were performed on Syrah, Cabernet Sauvignon, Semillon, Riesling, Grenache, Tempranillo, Merlot and Sauvignon Blanc. Management strategies investigated include; winter pruning, shoot thinning, shoot leaf removal, and bunch thinning. Bud dissection and image analysis was used to assess bud fertility and the size of inflorescence primordia. Image analysis during the growing season and at harvest was used to assess bunch architecture and bunch volume. Bunch weight and yield were determined at harvest to assess yield performance and validate early predictions.

Results – Bud dissection using image analysis was an effective method for early prediction of fruitfulness and bunch weight (R2=0.79). Similarly, assessing bunch volume at veraison correlated with bunch weight 2 at harvest (R =0.78). Assessment methods used in these studies have the potential to be used commercially for yield prediction and management. Management strategies applied in different experimental trials varied in their impact on both bud fertility and bunch architecture (in the current and future seasons). Not surprisingly, timing, extent of application as well as variety had an impact on the final outcome. Understanding how different vineyard management approaches can manipulate components of yield can help producers to manage their vineyards to desired yield and quality outcomes. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cassandra COLLINS (1), Xiaoyi Wang (1), Marco ZITO (1,2), Jingyun OUYANG (1), Annette JAMES(1), Roberta DE BEI (1), Catherine KIDMAN (1,3), Peter DRY(1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(3) Wynns Coonawarra Estate, PO Box 319 Coonawarra, South Australia 5263, Australia

Contact the author

Keywords

bunch architecture, canopy management, bud fertility, fruitset, yield management

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.