GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sustainable yield management through fruitfulness and bunch architecture manipulation

Sustainable yield management through fruitfulness and bunch architecture manipulation

Abstract

Context and purpose of the study ‐ Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures and sunny days during bud initiation generally result in high yields in the next season while cold periods during flowering and fruitset can reduce yield. As such, this variation in yield and potentially quality is difficult to predict and therefore manage. Early and more accurate assessments of fruitfulness and bunch architecture may improve these predictions. Vineyard management can be used to manage this variation and limit negative impacts on production. This study summarises research that; (1) investigated different methods for the assessment of bud fertility and bunch architecture and (2) assessed the impact of different management techniques on fruitfulness, bunch architecture and resultant yield.

Material and methods – Vineyard management trials were carried out in South‐eastern Australia during the last 4 years and were performed on Syrah, Cabernet Sauvignon, Semillon, Riesling, Grenache, Tempranillo, Merlot and Sauvignon Blanc. Management strategies investigated include; winter pruning, shoot thinning, shoot leaf removal, and bunch thinning. Bud dissection and image analysis was used to assess bud fertility and the size of inflorescence primordia. Image analysis during the growing season and at harvest was used to assess bunch architecture and bunch volume. Bunch weight and yield were determined at harvest to assess yield performance and validate early predictions.

Results – Bud dissection using image analysis was an effective method for early prediction of fruitfulness and bunch weight (R2=0.79). Similarly, assessing bunch volume at veraison correlated with bunch weight 2 at harvest (R =0.78). Assessment methods used in these studies have the potential to be used commercially for yield prediction and management. Management strategies applied in different experimental trials varied in their impact on both bud fertility and bunch architecture (in the current and future seasons). Not surprisingly, timing, extent of application as well as variety had an impact on the final outcome. Understanding how different vineyard management approaches can manipulate components of yield can help producers to manage their vineyards to desired yield and quality outcomes. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cassandra COLLINS (1), Xiaoyi Wang (1), Marco ZITO (1,2), Jingyun OUYANG (1), Annette JAMES(1), Roberta DE BEI (1), Catherine KIDMAN (1,3), Peter DRY(1)

(1) The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
(2) Istituto di Scienze della Vita, Sant’Anna School of Advanced Studies, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
(3) Wynns Coonawarra Estate, PO Box 319 Coonawarra, South Australia 5263, Australia

Contact the author

Keywords

bunch architecture, canopy management, bud fertility, fruitset, yield management

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Investigation of the effect of gelatine and egg albumin fining and cross-flow microfiltration on the phenolic composition of Pinotage red wine

Results indicated that cross-flow microfiltration removed similarly to fining treatments the most astringent tannins, but cross-flow microfiltration also removed up to 14 % more colour. RP-HPLC and spectrophotometric results showed that egg albumin is a softer fining treatment compared to gelatine and cross-flow microfiltration.

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).