IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of protein stabilization with aspergillopepsin I on wine aroma composition

Influence of protein stabilization with aspergillopepsin I on wine aroma composition


The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma. The use of aspergillopepsin I -an acid endoprotease from Aspergillus spp- in must and wine has been recently approved by OIV and the European Commission for protein stability, coupled to a heat treatment. Beyond the established efficacy of this approach on wine stability, little is known about its influence on the wine aroma profile. The present study aims to evaluate the combined effect of heat treatment with proteases (HP) in musts on the concentration of 74 wine aroma compounds at lab and semi-industrial scale.  Eight grape musts were treated with acid proteases and heated at 70°C for the lab-scale trials, and the concentrations of wine volatile compounds at the end of the alcoholic fermentation were compared with those deriving form a traditional white and rosé winemaking protocol. The must treatment induced a significant increase (one-way ANOVA, Tukey’s HSD p


Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster


Gallo Adelaide1, Paolini Mauro1, Tonidandel Loris1, Leonardelli Andrea1, Barbero-Fondazione Alice1, Celotti Emilio2, Natolino Andrea2, Schneider Rémi3, Larcher Roberto1 and Roman Tomas1

1Fondazione Edmund Mach—Technology Transfer Center
2Università degli Studi di Udine—Dipartimento di Scienze Agroalimentari, Ambientali e Animali
3Oenobrands SAS Parc Agropolis II

Contact the author


wine aroma, proteases, heat treatment, protein haze


IVAS 2022 | IVES Conference Series


Related articles…

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.