Macrowine 2021
IVES 9 IVES Conference Series 9 Elicitors used as a tool to increase stilbenes in grapes and wines

Elicitors used as a tool to increase stilbenes in grapes and wines

Abstract

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001). Grapevine phytoalexins (plant metabolites with antimicrobial activity that are synthetized de novo and fuction as the basis of a disease resistance mechanism) are stilbene compounds synthetized and accumulated in leaves and berries in response to abiotic stresses. Numerous experimental trials have recently been conducted with diferent elicitors to promote stilbene synthesis in grapevine berries, such UV irradiation (Cantos et al. 2003; Langcake and Pryce, 1977), aluminium chloride (Adrian et al. 1996), ozone (González-Barrio et al. 2006), methyl jasmonate (Vezulli et al. 2007) and benzothiadiazole (Iriti et al. 2004) . Since a highest presence of stilbenes in grapes could be a protecion against mould infection, the application of these compounds could, not only improve the healthiness of grapes, but also limit the use of fungices. The stilbenes found in wine occur mainly in the skin of grape berries, and they pass from grape to wine during alcoholic fermentation, so, at the same time, the wines elaborated with these grapes would be considered healthier wines. In our study, five preharvest treatments considered as elilicitors, were applied in Monastrell grapes by means five elicitors: benzothiadiazole, methyljasmonate, shell chitosan, fungal chitosan and cell wall yeast. These compounds were applied as sprays on clusters at veraison and one week later. Our main objetive was to check wether these treatments could enhance stilbene accumulation in berries at the moment of harvest, and then to be extracted during winemaking. For this target, we identified, quantified and compared the stilbene content in grapes and wines elaborated with grapes from the diferent treatments against grapes and wines without no treatment consdered as a control. The results showed that only some of these compounds improved significantly the stilbene concentration in grapes but almost of them increasing their stilbene composition at the end of alcoholic fermentation, mainly trans-resveratrol which is considered as the highest biological value.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocío Gil*, Encarna Gómez-Plaza, Jose Ignacio Fernandez

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.