Macrowine 2021
IVES 9 IVES Conference Series 9 Elicitors used as a tool to increase stilbenes in grapes and wines

Elicitors used as a tool to increase stilbenes in grapes and wines

Abstract

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001). Grapevine phytoalexins (plant metabolites with antimicrobial activity that are synthetized de novo and fuction as the basis of a disease resistance mechanism) are stilbene compounds synthetized and accumulated in leaves and berries in response to abiotic stresses. Numerous experimental trials have recently been conducted with diferent elicitors to promote stilbene synthesis in grapevine berries, such UV irradiation (Cantos et al. 2003; Langcake and Pryce, 1977), aluminium chloride (Adrian et al. 1996), ozone (González-Barrio et al. 2006), methyl jasmonate (Vezulli et al. 2007) and benzothiadiazole (Iriti et al. 2004) . Since a highest presence of stilbenes in grapes could be a protecion against mould infection, the application of these compounds could, not only improve the healthiness of grapes, but also limit the use of fungices. The stilbenes found in wine occur mainly in the skin of grape berries, and they pass from grape to wine during alcoholic fermentation, so, at the same time, the wines elaborated with these grapes would be considered healthier wines. In our study, five preharvest treatments considered as elilicitors, were applied in Monastrell grapes by means five elicitors: benzothiadiazole, methyljasmonate, shell chitosan, fungal chitosan and cell wall yeast. These compounds were applied as sprays on clusters at veraison and one week later. Our main objetive was to check wether these treatments could enhance stilbene accumulation in berries at the moment of harvest, and then to be extracted during winemaking. For this target, we identified, quantified and compared the stilbene content in grapes and wines elaborated with grapes from the diferent treatments against grapes and wines without no treatment consdered as a control. The results showed that only some of these compounds improved significantly the stilbene concentration in grapes but almost of them increasing their stilbene composition at the end of alcoholic fermentation, mainly trans-resveratrol which is considered as the highest biological value.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocío Gil*, Encarna Gómez-Plaza, Jose Ignacio Fernandez

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.